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Is Attention-Deficit/Hyperactivity Disorder a Risk
Syndrome for Parkinson’s Disease?

Alan A. Baumeister, PhD

Abstract: Recent epidemiological evidence indicates that diagnosis of attention-deficit/hyperactivity disorder (ADHD) is
associated with increased risk for diseases of the basal ganglia and cerebellum, including Parkinson’s disease (PD). The
evidence reviewed here indicates that deficits in striatal dopamine are a shared component of the causal chains that pro-
duce these disorders. Neuropsychological studies of adult ADHD, prodromal PD, and early-stage PD reveal similar def-
icits in executive functions, memory, attention, and inhibition that are mediated by similar neural substrates. These and
other findings are consistent with the possibility that ADHDmay be part of the PD prodrome. The mechanisms that may
mediate the association between PD and ADHD include neurotoxic effects of stimulants, other environmental exposures,
and Lewy pathology. Understanding the nature of the association between PD and ADHD may provide insight into the
etiology and pathogenesis of both disorders. The possible contribution of stimulants to this association may have impor-
tant clinical and public health implications.

Keywords: amphetamine, attention-deficit/hyperactivity disorder, methylphenidate, Parkinson’s disease, stimulants

The possible association between Parkinson’s disease
(PD) and attention-deficit/hyperactivity disorder (ADHD)
is an important, newly emerging topic of inquiry. The

possibility that PD and ADHD are related clinical entities has
been suspected for at least 20 years. Until recently, the reasons
for this suspicion were conjectural, resting primarily on puta-
tive common abnormalities of dopamine (DA) function. In
what appears to be the first direct test of this hypothesis,
Walitza and colleagues1 sought to determine retrospectively
whether patients with Parkinson’s disease were more likely
than controls to have had childhood onset ADHD. Although
total scores on measures used to diagnose ADHD retrospec-
tively were insufficient for such diagnosis, subjects with PD
had significantly more core symptoms of ADHD in childhood.

A recent large-scale, retrospective, population-based cohort
study of persons born in Utah between 1950 and 1992 pro-
vides additional evidence for a link between PD and ADHD.2

In that study, to enhance diagnostic sensitivity, investigators
used an outcome measure that included PD and related disor-
ders (secondary PD, other degenerative diseases of the basal
ganglia, and essential tremor), which they referred to collectively
as diseases of the basal ganglia and cerebellum (BG&C). Risk
for BG&C in a cohort of ~32,000 patients who had been

diagnosed with ADHDwas significantly increased 2.4-fold com-
pared to ~159,000matched non-ADHD controls. A comparable
significant 2.6-fold increase in risk was also observed in ADHD
patients when the outcome diagnosis was restricted to PD per
se. Of particular note, the risk for BG&C was dramatically in-
creased (6- to 8-fold) in persons with ADHDwho were known
to have been prescribed stimulant medication. By way of com-
parison, the risk for lung cancer among former heavy smokers
with five or fewer years since quitting is increased 12-fold.3

Thus, the magnitude of the reported association between
BG&C and stimulant-treated ADHD is substantial.

These findings and others discussed below suggest that an
important association exists between PD and ADHD. ADHD
precedes PD by definition, if not in fact.4 Thus, ADHD or fac-
tors associated with ADHDmay be antecedents that increase
the likelihood for subsequent development of PD. The delin-
eation of such antecedents could have important implications
for understanding the etiology and pathogenesis of both dis-
orders. In the review that follows, evidence pertaining to the
possible nature of the relationship between PD and ADHD
is explored. First, an overview of PD is given to provide back-
ground for subsequent discussion.

OVERVIEW OF PARKINSON’S DISEASE
After Alzheimer’s disease, PD is the next most common de-
generative neurological disorder of senescence.5–11 The inci-
dence and prevalence of Parkinson’s disease increase almost
exponentially with age, affecting approximately 1% of per-
sons over 60. PD occurs slightly more often in men than
women, in a ratio of about 3 to 2. PD is the fastest-growing
neurological disorder globally. The number of persons world-
wide with PD doubled between 1990 and 2015. This increase
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is largely, but not wholly, explained by increased life expec-
tancy and the consequent increased number of persons aged
60 and over.

The pathogenic mechanisms responsible for PD are mani-
fold, interactive, complex, and elusive. Traditionally, PD has
been divided into familial (inherited) and nonfamilial (sporadic)
forms. The familial form accounts for a small subset (5%–10%)
of total PD cases, most having early onset.12 The sporadic
form comprises the majority of senescent cases and has a
strong environmental component.13 It has recently become
clear, however, that sporadic PD also has a heritable compo-
nent.14,15 Generally speaking, the clinical presentation and
underlying pathology of familial and sporadic forms are sim-
ilar.16,17 These findings indicate that PD has multiple genetic
and environmental causal pathways that converge on a com-
mon neurobiological substrate.17,18

The discovery in the 1980s of a neurotoxin called MPTP,
which produces rapid and permanent parkinsonism in humans
and animals, spurred intense interest in the role of environmen-
tal toxins.19,20 Numerous potential environmental risk factors
are associated with PD, including exposure to pesticides, her-
bicides, industrial solvents, and heavy metals, as well as rural
living and farming/agriculture.21,22 Such factors, however, in-
dividually account for only a small amount of the variance in
PD. By contrast, smoking is associated with a 40% decrease
in the risk for PD. It is not known whether the association be-
tween smoking and PD is causal. If so, reduced tobacco use
resulting from public health initiatives may contribute to in-
creasing rates of PD.9

Diagnosis of Parkinson’s disease is usually based on clinical
presentation of motor signs.Widely used diagnostic criteria re-
quire the occurrence of two or more of the following: resting
tremor, bradykinesia, rigidity, and postural/gait instability.
Clinical diagnosis can be confirmed only by postmortem neu-
ropathologic analysis (see below). Clinical-pathological studies
indicate that the accuracy of clinical diagnosis is ~50% and
~80% in patients with a disease duration of <5 years and
>5 years, respectively.23,24 Although motor signs are the
principal clinical criteria for diagnosis of PD, a variety of
nonmotor signs and symptoms also occur. These include
REM sleep behavior disorder (e.g., dream enacting behavior),
altered olfaction (e.g., hyposmia), gastrointestinal disorders
(e.g., constipation), excessive daytime sleepiness, cognitive
impairment, and depression.25–27

An important recent development in the diagnosis of PD is
the recognition of a prodromal syndrome. The underlying pa-
thology in PD develops slowly over many years, probably de-
cades. A problem with using classic motor signs to diagnose
PD is that these signs do not manifest until extensive neuro-
degeneration has occurred. Early identification of persons at
risk for PD has potential therapeutic implications.27 Prodro-
mal PD syndrome is a heterogenous collection of subtle motor
and nonmotor signs and symptoms. Subtle motor deficits are
detectable on neuropsychological tests (e.g., Purdue Pegboard
Test) several years before diagnosis of PD.28 The nonmotor

features of prodromal PD include constipation, hyposmia,
andREM sleep behavior disorder. This sleep disorder is an es-
pecially powerful predictor of subsequent development of
neurodegenerative disease, including PD, and precedes onset
of PD by an average of 28 years.29,30 Constipation is a risk
factor for PD, and it may precede the onset of motor symp-
toms by as much as 20 years.31–33 Olfactory dysfunction oc-
curs in ~90% of patients with PD and is associated with
increased risk for PD for up to 4 years before the motor signs
emerge.34 Other risk factors for PD include cognitive impair-
ments, anxiety, and depression.26,35,36

The relationship between the premotor features of PD and
its pathogenesis is of considerable interest. Neuronal inclu-
sions, called Lewy bodies and Lewy neurites—consisting
mostly of misfolded α-synuclein protein—are a pathologic
hallmark of idiopathic PD.37–40 According to Braak’s hypoth-
esis, PD is initiated by an unknown pathogen (e.g., a virus) that
enters the body by way of the nasal cavity and gut, initiating
Lewy pathology and producing the prodromal gastrointestinal
and olfactory defects.41–45 The pathology then spreads toward
the central nervous system by way of olfactory and vagus
nerves and enters the brain at the olfactory bulb and the dorsal
motor nucleus of the vagus nerve. The rostral progression of
pathology from the dorsal motor nucleus through the mid-
brain and forebrain eventually damages neural structures
that control movement. Braak’s hypothesis has considerable
support.46–49 Not all patients with PD, however, evidence
the proposed pathologic changes in the proposed sequence,
and the role of Lewy pathology in neurodegeneration is uncer-
tain. It is not clear whether Lewy pathology is the cause of neu-
rodegeneration or whether it is a neuroprotective response to
neurodegeneration.50–52 Either way, Lewy pathology is a bio-
marker for PD.

The pathognomonic feature of PD is selective degeneration
of mesencephalic DA neurons.53 For unknown reasons, DA
neurons in the substantia nigra (SN) are more vulnerable than
other DA pathways, including those in the adjacent ventral
tegmental area (VTA). Postmortem histologic studies show
that ~80% of SN and ~50% of VTA cell bodies are lost in ad-
vanced disease.54,55 The heightened vulnerability of SN DA
neurons may be related to differential cellular response to
α-synuclein. Overexpression of a mutant α-synuclein gene
in mice induces in vivo increases in firing rates of SN DA but
not VTA DA neurons.56 Moreover, mutant α-synuclein–
induced activation of DA neurons occurred in middle-aged
but not young adult mice. It was suggested that acquired sen-
sitivity to this effect of α-synuclein may be an early patho-
physiological marker of SN DA neuronal vulnerability that
precedes neurodegeneration.

ADHD AND PD: A COMMON PATHWAY LINKAGE
Multiple lines of evidence suggest that PD and ADHD share
structural, chemical, and functional alterations of mesen-
cephalic DA neurons. Transcranial sonography (TCS) of the
SN shows increased echogenicity, relative to control subjects,
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in patients with PD57–60 and in children and adolescents with
ADHD.61,62 In PD, hyperechogenicity of the SN, defined as
greater than the 90th percentile of controls, is associated
with a 17-fold increased risk for subsequent development
of PD.58 SN echogenicity is also increased in patients with
neuroleptic-induced parkinsonism, and the size of the echogenic
signal correlates with severity of parkinsonian symptoms.63 In
ADHD, SN hyperechogenicity has been reported in 48% of
children and adolescents with ADHD, and size of the
echogenic signal correlated positively with the severity of core
symptoms of ADHD.61 The methodologic quality of studies
that have employed transcranial sonography in the diagnosis
of PD is good. A meta-analysis of these studies59 found that
26 of the 31 studies examined had a score of 10 or greater
(out of amaximum of 14) on theQuality Assessment of Diag-
nostic Accuracy Studies.64,65 In the two studies that found
hyperechogenicity in persons with ADHD, one62 employed
a blinded design, the other61 did not, and in both studies
ADHD subjects received stimulant medication. Additional
studies are needed to replicate transcranial sonography findings
in children and adolescents with ADHD to determine whether
SNhyperechogenicity occurs in adults with ADHDand to de-
termine the role of stimulant medications on observed effects.
Studies are also needed to determine the pathologic changes
responsible for hyperechogenicity of the SN. Increased SN
echogenicity in PD is associatedwith several pathologic changes,
including gliosis and increased iron concentration.59 Interest-
ingly, a recent study found increased iron concentration in the
striatumof adultswithADHD.66Additional studies are needed
to determinewhether iron is increased in the SN inADHD, and
whether SN hyperechogenicity is associated with alterations of
nigrostriatal DA neurons.

PD andADHDalso have similar structural changes in pro-
jection regions of mesencephalic DA neurons. DA neurons of
the SN project to the dorsal striatum (putamen and caudate).
The DA pathway from the SN to the putamen is the first to
lose neurons in PD, and it is thought to be primarily responsi-
ble for bradykinesia and rigidity.67–69 Atrophy of the putamen
is a common finding in structuralMRI imaging of PD.70 Scores
of structural MRI studies of children and adults with ADHD
have been conducted in the last 20 years, and multiple
meta-analyses of these studies have been published.71–74 A ro-
bust finding from these studies is reduced volume of the caudate
and lentiform nuclei (i.e., the putamen and globus pallidus) in
children with ADHD.

A caveat is warranted regarding structural changes in the
striatum in ADHD. Several studies have found that reduced
striatal volume detected by MRI in ADHD patients dimin-
ishes with age, to the extent that it is no longer detectable in
adults.72,73,75 This suggests that striatal development is de-
layed in ADHDbut eventually normalizes in early adulthood.
However, not all studies are in agreement in this regard. Using
a relatively large sample and conventional T1-weighted imag-
ing, Proal and colleagues76 found significantly reduced caudate
volume in adults with ADHD. Moreover, a recent study by

Sethi and colleagues66 indicates that conventional MRI has re-
duced sensitivity to detect striatal abnormalities in adults with
ADHD. In this study, magnetization transfer imaging (MTI),
which provides improved contrast between white and gray
matter, detected reduced volume of the ventral striatum in
adults with ADHD that was not demonstrable using conven-
tional MRI. The authors postulated that differences in striatal
iron content may explain differential sensitivity of children and
adults with ADHD to conventional MRI. Indeed, the same
study found evidence for increased iron content in the striatum
of adults with ADHD compared to children with ADHD.

Molecular imaging studies also suggest commonalities be-
tween PD and ADHD. Loss of nigrostriatal DA neurons in
PD is associated with decreases in the dorsal striatum of mul-
tiple markers of DA function, including DA, DAmetabolites,
and membrane and vesicular DA transporters (DAT and
VMAT, respectively).77,78 The most studiedmarker of striatal
DA function in ADHD is DAT. Both increases and decreases in
striatal DAT have been reported in ADHD. Ameta-analysis of
these studies found that much of this variation across studies is
accounted for by variation in the stimulant exposure history of
subjects.79 Striatal DAT levels tend to be lower in drug-naive
ADHD patients than in those who received long-term stimu-
lant therapy.

Deficits in mesolimbic DA are also demonstrable in both
PD and ADHD. Mesolimbic DA neurons project from the
VTA to the ventral striatum (nucleus accumbens and olfac-
tory tubercle).80 Structural pathology, including decreased
volume, and decreased DA concentration are demonstrable
in the nucleus accumbens of patientswith PD.81–84Using conven-
tionalMRI technology, childrenwithADHDhave decreased vol-
ume of the nucleus accumbens and other limbic structures.75

As noted above, adults with ADHD have decreased volume
of the ventral striatum when studied using MTI.66

The mesolimbic DA pathway to the nucleus accumbens
plays a central role in mediating natural and drug-induced re-
ward.85,86 Deficits in reward processing occur in both PD and
ADHD. Mesolimbic-associated clinical presentations in PD
include apathy, anhedonia, and deficits in reward-based
learning.87,88 The latter appears to result from an impaired re-
sponse to reward anticipation rather than processing related
to reward receipt.88–90 The most consistent and frequently re-
portedmanifestation of deficit reward processing in ADHD is
an aversion to delay of gratification. Children and adults with
ADHD tend to choose smaller immediate rewards over larger
delayed rewards.91–93 This characteristic in ADHD, like the
impairment in PD, appears to result from diminished striatal
DA signaling related to reward anticipation.92,94–97

NEUROPSYCHOLOGICAL FEATURES OF EARLY-STAGE PD
AND ADULTADHD, AND THEIR NEURAL CORRELATES
It has been suggested that ADHD symptoms may precede the
motor symptoms of PD.1 This raises the possibility that adult
ADHD may be part of the PD prodrome. In this section the
neuropsychological profile of early-stage PD (PD-ES) is compared
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to that of adult ADHD. For the purpose of the following dis-
cussion, PD-ES is defined as either newly diagnosed PD, PD
with disease duration of two or fewer years, or PD that has
not advanced beyond Hoehn and Yahr stage 2.98 Adult
ADHD is defined as ADHD present in persons aged 18 or
older. A comprehensive review of the neuropsychology of
PD-ES and adult ADHD is beyond the scope of this article. Ac-
cordingly, the following discussion focuses on neuropsycho-
logical features that have been assessed in both conditions.

Comparative Neuropsychology of PD-ES and Adult ADHD
Comparison of the results of neuropsychological testing in
PD-ES and adult ADHD is fraught with conceptual andmeth-
odological difficulty. To varying degrees, neuropsychological
tests assess multiple cognitive, perceptual, affective, and be-
havioral domains. Which domains particular tests assess is a
frequent topic of discussion and debate.99–104 Different investi-
gators may characterize the domains assessed by particular tests
differently. For example, the cognitive domain assessed by the
Trail Making Test Part B is variously characterized as atten-
tion105,106 or as motor control and cognitive flexibility.107–110

In addition, many neuropsychological tests have multiple
subtests that are designed to tap different processes. Different
studies using a given test may report or combine results of
subtests differently, leading to apparent inconsistencies. Adding
to the difficulty, there are oftenmultiple ways to score particular
tests, which do not necessarily have common psychometric
properties or tap common domains and neural processes.111–113

Finally, samples of persons with PD-ES and adult ADHD used
in the studies discussed below are often clinically heterogenous,
which, no doubt, accounts for much of the inconsistency
across studies.107,114–118 For all of these reasons, it is impor-
tant to be as precise as possible about subject characteristics
and the particular tests and measures used when comparing
results across studies and clinical populations.

Notwithstanding these caveats, some tentative conclusions
about the comparative neuropsychology of PD-ES and adult
ADHD can be offered. Table 1 shows the neuropsychological
tests that have been employed in both groups and whether in-
dividual studies report impairment or not. Studies that have
employed standard neuropsychological tests of executive
function137—including Stoop interference tests, trail making
tests, backward digit span tests, semantic fluency tests,
card sorting tests, and tower tests—report impairments
in both PD-ES patients105,106,119–122,132,133,135,136 and adults
with ADHD.107–110,123–127,129,131,134 In terms of cognitive
domains, these studies suggest that both groups have impair-
ments in core domains of executive function, including work-
ing memory, cognitive flexibility, inhibitory control, and
planning.102–104,113,138 Diverse memory impairments have
also been reported in PD-ES patients105,122,132,133,135 and
adults with ADHD,108,109,130,139 including deficits in imme-
diate and delayed recall and recognition, which are classic
measures of episodic memory.140,141 Short-term memory—
assessed by the digit span forward test—does not appear to

be impaired in PD-ES.105,106,122 The digit span forward test
has produced mixed results in adults with ADHD.107,109,110,128

Awide range of attentional deficits have been reported in adult
ADHD, including impaired selective, divided, and sustained
attention.108,142–144 Although many of the neuropsychological
tests that have been employed in PD-ES tap attentional pro-
cesses, there is a paucity of research on attention per se in this
group, though impairment on the Brief Test of Attention, a
measure of auditory divided attention,145 in PD-ES has been
reported.132 A large body of evidence exists regarding cogni-
tive function in persons at risk for subsequent development of
PD. These studies show, with considerable consistency (al-
though see Marchand et al.146 and Weintraub et al.147),
that such persons have impairments in executive func-
tions, attention, and memory.35,148–154 The studies on
the neuropsychological deficits that precede PD are partic-
ularly important because they are consistent with the idea
that the cognitive deficits of adult ADHD may be part of
the PD prodrome.

PD-ES, Adult ADHD, and Mild Cognitive Impairment
Another possible area of clinical overlap between PD-ES and
adult ADHD is mild cognitive impairment (MCI). MCI—
along with its corollary, mild neurocognitive disorder, from
the fifth edition of the Diagnostic and Statistical Manual of
Mental Disorders—are diagnostic categories for cognitive de-
cline, indicated by subjective complaints and neuropsycho-
logical test evidence, that does not substantially impair
adaptive functioning.4,115 The concept of MCI evolved from
efforts to define and diagnose a transition stage between nor-
mal cognition and dementia in Alzheimer’s disease.155–157 Di-
agnosis of MCI is also associated with increased risk for
developing dementia in Parkinson’s disease.118,158 Approxi-
mately 20% to 40% of PD-ES patients meet Movement Dis-
order Society criteria for MCI.133,159–162 Depending on the
extent of neuropsychological testing performed, those criteria
for Parkinson’s disease with MCI (PD-MCI) allow for clas-
sification into four PD-MCI subtypes.115 Amnestic and
non-amnestic subtypes are based on presence or absence
of memory impairment. These two categories can be fur-
ther divided based on whether the impairment is in a single
domain or multiple domains. Among drug-naive PD-ES pa-
tients, the amnestic multidomain MCI subtype is the most
common.159 Impairments in executive function, memory, at-
tention, and visuospatial function have been reported in PD-ES
with MCI.133,159 A recent study found that multi-domain
MCI may be a part of the PD prodrome.148

The relationship between MCI and adult ADHD is un-
clear. The cognitive features of MCI overlap substantially
with the cognitive impairments in adult ADHD.163 This
overlap can make it difficult to distinguish between these
syndromes.164 Nevertheless, a recent study found that
adults with ADHD were no more likely to score in the
MCI range on the Montreal Cognitive Assessment than per-
sons without ADHD.165
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Table 1

Studies Reporting Results of Neuropsychological Tests in Persons with Early-Stage Parkinson’s Disease or Adult ADHD

Test Early-stage Parkinson’s disease Adult ADHD

Impaired Not impaired Impaired Not impaired

Stroop
interference test

Henik et al. (1993)119

Dujardin et al. (1999)120

Aarsland et al. (2009)121

Broeders et al. (2013)122

Muslimović et al. (2005)106 King et al. (2007)123

Antshel et al. (2010)124

Boonstra et al. (2010)125

Fuermaier et al. (2013)109

Fuermaier et al. (2015)108

Kakuszi et al. (2016)126

Johnson et al. (2001)127

Saboya et al. (2009)128

Pazvantoğlu et al.
(2012)129

Butzbach et al. (2019)130

Trail Making
Test Part A

Muslimović et al. (2005)106
Elgh et al. (2009)105

Broeders et al. (2013)122

Murphy (2002)131

Mostert et al. (2015)107
Johnson et al. (2001)127

Saboya et al. (2009)128

Rohlf et al. (2012)110

Pazvantoğlu et al. (2012)129

Trail Making
Test Part B

Muslimović et al. (2005)106
Elgh et al. (2009)105

Broeders et al. (2013)122

Johnson et al. (2001)127

Murphy (2002)131

Rohlf et al. (2012)110

Pazvantoğlu et al. (2012)129
Fuermaieret al. (2013)109

Mostert et al. (2015)107

Fuermaieret al. (2015)108

Saboya et al. (2009)128

Butzbach et al. (2019)130

Digit Span
Forward

Muslimović et al. (2005)106

Elgh et al. (2009)105

Broeders et al. (2013)122

Fuermaier (2013)109

Mostert et al. (2015)107
Saboya et al. (2009)128

Rohlf et al. (2012)110

Digit Span
Backward

Muslimović et al. (2005)106
Broeders et al. (2013)122

Kalbe et al. (2016)132

Elgh et al. (2009)105 Boonstra et al. (2010)125

Rohlf et al. (2012)110

Mostert et al. (2015)107

Saboya et al. (2009)128

Fuermaier et al. (2013)109

Butzbach et al. (2019)130

Category
(semantic) fluency

Muslimović et al. (2005)106
Elgh et al. (2009)105

Aarsland et al. (2009)121

Broeders et al. (2013)122

Pereira et al. (2014)133

Kalbe et al. (2016)132

Tucha et al. (2005)134

Mostert et al. (2015)107
Boonstra et al. (2010)125

Letter (phenomic)
fluency

Broeders et al. (2013)122

Pereira et al. (2014)133
Elgh et al. (2009)105 Tucha et al. (2005)134

Fueramier et al. (2013)109

Mostert et al. (2015)107

Johnson et al. (2001)127

Boonstra et al. (2010)125

Fuermaier et al. (2015)108

Card sorting tests Levin et al (1988)135

Elgh et al. (2009)105

Broeders et al. (2013)122

Kalbe et al. (2016)132

Antshel et al. (2010)124

Rohlf et al. (2012)110
Johnson et al. (2001)127

Saboya et al. (2009)128

Boonstra et al (2010)125

Tower tests Foltynie et al. (2004)136

Broeders et al. (2013)122
Murphy (2002)131 Saboya et al. (2009)128

Boonstra et al. (2010)125

ADHD, attention-deficit/hyperactivity disorder.
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A related issue is whether ADHD is associated with de-
mentia. Indeed, there has been speculation that adult ADHD
and dementia may be different points along a pathophysio-
logical continuum.163,166 The results of research on this topic
are mixed. Ivanchak and colleagues167 did not find an associ-
ation between retrospectively diagnosed ADHD and demen-
tia in geriatric subjects. By contrast, a recent large-scale,
population-based cohort study in Taiwan found that the risk
for developing dementia is increased 3.4-fold in adults with
ADHD compared to matched non-ADHD controls.168 A
case-control study found that Lewy body dementia and
Alzheimer’s disease are associated with adult symptoms of
ADHD.169 Another cohort study in the United States found
that a severe ADHD phenotype is associated with increased
hospitalization for Lewy body dementia and Alzheimer’s dis-
ease.170 All of these studies have methodological limitations.
Nevertheless, the weight of the extant evidence, albeit sparse,
suggests an association between adult ADHD and subsequent
development of dementia.

Neural Correlates of Cognitive Impairments in PD-ES and
Adult ADHD
Numerous studies have been conducted to elucidate the neu-
ral mechanisms that underlie cognitive impairment in PD-ES
and PD-MCI patients. Cortical thinning or morphometric
changes in PD-ES or PD-MCI patients have been reported
in prefrontal, temporal, parietal, occipital, and insular corti-
ces, and in numerous subcortical structures, including the
caudate, amygdala, nucleus accumbens, thalamus, putamen,
and hippocampus.171–176 Some of these structural changes
have been correlated with deficits in cognitive function. The
hippocampus and associated structures have been specifically
implicated in memory impairment in PD-ES and PD-MCI.
Compared to PD patients with normal cognition (PD-NC),
PD-MCI patients have decreased hippocampal volume, which
in non-demented PD patients is correlated with memory im-
pairment on the memory subscale of the Dementia Rating
Scale.176 Compared to healthy controls, drug-naive PD-ES pa-
tients have hippocampal atrophy, which is correlated with per-
formance on the Wechsler Memory Scale–Revised.172 In
addition, compared to PD-NC patients, drug-naive PD-ES pa-
tients with MCI display atrophy of the entorhinal cortex;174

which serves as the major relay between cortico-hippocampal
circuits involved in memory;177,178 in PD-MCI patients, de-
creased volume of the entorhinal cortex is correlated with
memory impairment, assessed by theHopkins Verbal Learning
Test.174 Impaired sustained attention has been associated with
atrophy of the prefrontal cortex in PD-ES patients.172

Functional imaging studies have also found neural corre-
lates of cognitive impairments in PD-ES and PD-MCI.
Drug-naive PD-ES patients with MCI compared to PD-NC
patients had increased activity in the right inferior frontal
and left fusiform gyri, and activity in the right inferior frontal
gyrus was negatively correlated with the Montreal Cognitive
Assessment score, category fluency, and the Symbol Digit

Modalities Test,179 the last being a measure of speed and effi-
ciency of neural processing.180 PD-MCI, compared to
PD-NC, patients have prolonged arterial transfer time in the
right thalamus, which is negatively correlated with semantic
fluency,181 a commonly usedmeasure of executive function.104

Structural and functional imaging studies have implicated
the cerebellum in neuropsychological deficits in PD, including
PD-ES. Although historically controversial, a role for the cere-
bellum in cognition and affect is now generally accepted.182,183

Atrophy of the cerebellum is associated with cognitive and af-
fective impairments in PD.184–187 In PD-ES, altered connec-
tivity between the cerebellum and a variety of cortical and
subcortical regions has been reported.188,189

Numerous functional imaging studies have been conducted
to evaluate neural correlates of neuropsychological impair-
ment in adult ADHD. Functional imaging has been conducted
during tasks designed to assess working memory,190–194 more
complex mixtures of executive functions (e.g., set shifting/
inhibition/executive attention/working memory),195–199 vari-
ous aspects of reward processing,200–205 and attention/
inhibition.200,204,206 Studies employing working-memory
tasks have found activation differences between persons with
adult ADHD and non-ADHD controls in multiple forebrain,
midbrain, and hindbrain regions. The brain regions that have
been most frequently reported to exhibit altered activity dur-
ing working-memory tasks in adults with ADHD are various
regions of the cerebellum and prefrontal cortex.190,192–194

The most frequently reported brain region to exhibit altered
activity in adults with ADHD during tasks that tap multiple
executive functions is the cingulate cortex.195–199 Other areas
that exhibited altered activity in adults with ADHD during
tasks that tap multiple executive functions include areas of
the prefrontal cortex, such as the dorsolateral prefrontal cor-
tex and orbitofrontal cortex,195,197 dorsal striatum,197,199

and insula.195,197 During tasks involving reward processing,
adults with ADHD have been reported to have altered activ-
ity in prefrontal cortical areas, including the ventromedial
prefrontal and orbitofrontal cortices,200,201,204,205 dorsal
and ventral striatum,201,202,204,205 and anterior cingu-
late.201,203,204 Functional imaging during tests of attention/
inhibition revealed altered activity in prefrontal and parietal
areas, dorsal striatum, thalamus, anterior cingulate, and cer-
ebellum.200,204,206 Perhaps the safest generalization that can
be drawn from these disparate findings is that cognitive im-
pairments in adults with ADHD are associated with altered
activity in fronto-striato-cerebellar networks, which is consis-
tent with the conclusions of others.190,200,207,208

Cognitive deficits in PD-ES and PD-MCI are associated
with DA dysfunction in cortico-striatal circuits that are impli-
cated in executive function. Christopher and colleagues,209

using PET imaging, reported that PD-MCI patients, com-
pared to PD-NC patients and healthy controls, had signifi-
cantly decreased indices of DA function in the associative
striatum and reduced D2 receptors in the insula, the latter ef-
fect being correlated with a composite measure of executive
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function. PD-MCI patients in this study were not early stage.
Decreased striatal DA function was present in PD-MCI pa-
tients, however, after controlling for disease severity. Schragg
and colleagues210 found that results of SPECT imaging for
caudate DAT contributed to prediction of cognitive decline
(Montreal Cognitive Assessment score) in drug-abstinent
PD-ES patients. Siepel and colleagues,211 also using SPECT
imaging, found that DAT binding in the caudate and putamen
in drug-naive PD-ES patients is associatedwith impairment in
executive function and attention. Another PETstudy revealed
area-specific increases and decreases in floro-L-dopa uptake in
the frontal cortex and striatum, respectively, in drug-naive
PD-ES patients compared to healthy controls; performance
on a test of vigilance was positively correlated with uptake in
the dorsolateral prefrontal cortex, and performance on the
Stroop test was negatively correlated with uptake in the medial
frontal and anterior cingulate cortices.212 Williams-Gray and
colleagues213 reported that a particular variant of the COMT
gene, which codes for an enzyme involved in DA metabolism,
is correlated with executive function assessed by the Tower of
London Test in PD-ES patients. Finally, decreased striatal DA
function has also been linked to cognitive impairment in pro-
dromal PD.147,149

A relative paucity of studies have examined the association
of DA function with cognitive impairment in adults with
ADHD. There is evidence for correlations between DA recep-
tor and DAT binding in the dorsal and ventral striatum on
measures of interference/inhibition, inattention, and motiva-
tion in this group.93,214–218

Comorbid Psychiatric Disorders in PD-ES and Adult ADHD
Comorbid psychiatric disorders are another area of overlap
between PD-ES and adult ADHD. PD-ES and PD-MCI pa-
tients have increased occurrence of depressive and anxiety
disorders.219–221 In PD-MCI, symptoms of depression and
anxiety are more strongly associated with the amnestic than
non-amnesticMCI subtype.222 Depression in PD-MCI is pos-
itively correlated with apathy,220 though depression and apa-
thy are separable disorders.223 A large body of evidence
indicates that depressive and anxiety disorders are part of
the PD prodrome.224–228 Indeed, depression, in particular, is
among the diagnostic criteria for prodromal PD.229 Although
research is mixed on how early it is that depressive and anxi-
ety disorders emerge before the motor symptoms of PD, some
studies have indicated that it may be as much as 15 to 20
years,224,226 indicating that these disorders are not necessarily
secondary to the disabling symptoms of PD. Moreover, pa-
tients with PD have higher rates of depression than those with
other chronic disabling diseases.230 Depression in advanced
PD has been linked to pathological changes in raphe nu-
clei,231 the site of ascending serotonin neurons. A paucity of
research is available on the pathophysiology of depression
and anxiety in PD-ES and prodromal PD.

Adults with ADHD have increased risk for depression.232–235

The mechanisms that mediate this association are unknown.

Based largely on results of family and twin studies, Faraone
and Larsson236 proposed that ADHD and depression are as-
sociated because they share common genetic etiologies. An al-
ternative hypothesis that has received considerable attention
posits that depression is caused by the adverse consequences
of ADHD, such as impaired peer and family relationships
and low academic achievement. Research designed to test this
hypothesis indicates that such variables account for a sub-
stantial amount of the variance in depression in adolescents
with ADHD.237–239 Systematic investigation into the vari-
ables that mediate the association between adult ADHD
and depression is lacking. Nevertheless, on the assumption
that ADHD is a developmental disorder, an important fea-
ture of the association between adult ADHD and depression
is that the former precedes the latter. This is borne out by em-
pirical research.240 As noted above, the opposite temporal re-
lationship exists between the onset of PD and depression.
This could suggest that the mechanisms that underlie the as-
sociation with depression are different in these disorders or
that ADHD and depression are part of the PD prodrome.

STIMULANTS AND PARKINSON’S DISEASE
Two clinical conditions can be associated because the treat-
ment for one directly causes the other. Amphetamines and
methylphenidate are the principal medications used to treat
ADHD. It has been suggested that the association between
PD and ADHD may be explained, in part, by toxic effects
of these drugs on DA neurons.241 Amphetamine, metham-
phetamine, and methylphenidate are distinct chemicals, and,
where it is important, they are discussed separately below.
However, due to the considerable overlap of pharmacological
profiles of amphetamine and methamphetamine, in certain
contexts it is convenient to discuss these drugs together.

Much of the research on stimulant neurotoxicity has focused
on methamphetamine because of its widespread abuse. The re-
search on animals and human methamphetamine abusers is
clear—methamphetamine and other amphetamines are toxic to
mesencephalic DA neurons. Indeed, methamphetamine-induced
neurotoxicity is used tomodel PD in animals.242 Inmice, rats,
and monkeys, prolonged exposure to methamphetamine/
amphetamine (meth/amph) causes cell loss in the SN,243–245

degeneration of striatal DA axon terminals,243,246–248 decreases
in striatal DA and DAT, and decreased DAT function.249–256

The pattern of neurotoxic changes induced by methamphet-
amine parallels the DA deficits seen in PD. In monkeys, the
methamphetamine-induced decrease in DA concentration is
greatest in the putamen, followed by the caudate and then the
nucleus accumbens, and toxic change in SN DA neurons is
greater than in VTA neurons.250 It has been reported that, in
monkeys, methamphetamine-induced decreases in striatal DA
markers occur without decreases in cell numbers in the ventral
midbrain, suggesting that the terminals of DA neurons are more
affected than cell bodies.244 In the same study, substantial recov-
ery of striatal DAT occurred after 1.5 years. However, another
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study, also in monkeys, found that neurotoxic effects of meth-
amphetamine lasted for up to four years after exposure.257

Numerous diverse findings point to pathologic changes in DA
systems in human chronic meth/amph abusers. Echogenicity
of the substantia nigra is increased in abstinent adult meth/
amph abusers,258–260 and the degree of this increase is positively
correlated with the duration of meth/amph abuse and the esti-
mated amount of lifetime methamphetamine intake.258 Persons
with a history of meth/amph abuse have increased Parkinson
motor symptoms.258,260 Postmortem studies of striatal tissue
of meth/amph abusers show significant reductions in several in-
dices of DA function, including DA, DAT, VMAT, and tyrosine
hydroxylase, in numerous DA terminal regions, including the
caudate, putamen, and nucleus accumbens.261–263 PET stud-
ies show reduced DAT density in abstinent meth/amph
abusers.264–266 DAT levels begin to recover after a year of ab-
stinence267 but remain decreased for up to three years.265 Fi-
nally, several epidemiological and case-control studies have
shown an association between history of meth/amph abuse
and increased risk for subsequent or early development of
PD or increased parkinsonism.260,268–273

An important question is whether amphetamines, as they
are used clinically to treat ADHD, are toxic to DA neurons.
In most of the animal and human studies cited above, stimu-
lant exposure levels are high relative to clinical doses, and
dosing regimens (as stimulants) rarely mimic the manner in
which these drugs are used clinically. The study by Ricaurte
and colleagues248 is an exception. In that study, baboons
orally self-administered a racemic (3:1 d/l) amphetamine mixture
twice daily in increasing doses ranging from 2.5 to 20 mg/day
for four weeks. Plasma amphetamine concentrations, mea-
sured at one-week intervals, were comparable to those ob-
served in children taking amphetamine for ADHD. Two to
four weeks after cessation of amphetamine treatment, multi-
ple markers of striatal DA function were decreased, including
DA and DAT. In another group of animals (squirrel mon-
keys), d/l amphetamine blood concentration was titrated to
clinically comparable levels for four weeks by administering
varying doses of amphetamine by orogastric gavage. These
animals also had decreased markers of striatal DA function
assessed two weeks after cessation of amphetamine.

Methylphenidate (MPH) appears to be substantially less
neurotoxic than meth/amph. MPH had no effect on survival
of embryonicDA cells in vitro but rather had a protective effect
against the DA neurotoxin 1-methyl-4-phenylpyridinium.274

Repeated administration of MPH to adult rats (50 mg/kg for
30days,254 100mg/kg for 4 days275) or to adult rhesusmonkeys
(1–96mg/kg for 6months)254 had no effect on striatal DA. By
contrast, repeated doses (10–40 mg/kg, every 2 hours � 4) of
MPH in adult mice caused a short-term decrease in striatal
DA.255 These doses and higher doses (80–100 mg/kg every
2 hours� 4) had no long-term effect on striatal DA.255 Some
evidence suggests that MPH may be more toxic during early
brain development. Prolonged exposure (once daily for 5
days/week for 12 weeks) of young mice to a relatively low

dose (10mg/kg) ofMPH produced gliosis and a ~20% decline
in DA neurons in the substantia nigra.276 Similarly, adminis-
tration of MPH (2 mg/kg/day for 2 weeks) in prepubertal,
but not post-pubertal, rats produced a prolonged decrease in
striatal DAT.277 By contrast, two studies designed to mimic
prolonged developmental exposure in children using dosing
regimens that produced MPH blood levels in the clinical ther-
apeutic range (15–25 ng/ml) in rhesusmonkeys found no effect
of MPH treatment on DAT or DA receptors.278,279

The mechanisms responsible for differential meth/amph and
MPHneurotoxicity are unclear. Oxidative stress, excitotoxicity,
and mitochondrial dysfunction have all been implicated in
the neurotoxic actions of both meth/amph and MPH.280–282

Recent evidence suggests that stimulant neurotoxicity is medi-
ated by effects on protein folding. As noted above, misfolding
of α-synuclein is associated with neurodegeneration in PD.
Amphetamine binds preferentially to the N-terminus of α-
synuclein and enhances misfolding, whereas MPH binds to
both the N- and C-termini, resulting in a loop structure that
inhibits misfolding.283

The unambiguous neurotoxicity of meth/amph is worri-
some. Use of prescription meth/amph formulations in the
United States doubled between 2006 and 2016, and exceeded
that of MPH in 2016.284,285 By contrast, in other developed
regions of the world, MPH is still the most widely used stim-
ulant.286,287 The National Survey on Drug Use and Health
2015–2016 found that 16 million adults in the United States
used prescription stimulants.288 The prevalence of 30-day
prior use of prescription meth/amph among U.S. children
and adolescentswas 1.3%between2011 and2014.Among chil-
dren aged 6 to 11, the prevalence ofmeth/amphuse in this period
was 2.1%.284 If meth/amph, as it is used clinically, is toxic to
DA neurons, the rising clinical use of amphetamines in the
United Statesmay portend increases in PD in the coming years.

POSSIBLE LINKAGE MECHANISMS
If PD and ADHD are associated clinical entities, then under-
standing the mechanisms responsible for this association
could provide insights into the etiology and pathogenesis of
both disorders. One possible explanation for an association
between PD and ADHD is that both are causally related to
a common exposure. The study that provides the principle ep-
idemiological evidence for a link between PD and ADHD2

controlled for some potential confounding exposures (e.g.,
antipsychotic and tobacco use) but not for others. Potentially
relevant variables that were not controlled include traumatic
brain injury and exposure to environmental toxins. Anteced-
ent traumatic brain injury increases risk for both PD and
ADHD,289,290 and both disorders are associated with lead,
mercury, and pesticide exposure.291–296 Additional epidemio-
logical studies are needed to assess the contribution of such
variables to the association between PD and ADHD.

Genetic factors may also mediate an association between
PD and ADHD. ADHD has a strong familial component
(h2 = ~0.75).236 As noted above, although environmental
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factors play a major role in sporadic PD, genetic factors are
important.15 A possible genetic linkage between PD and
ADHD has been investigated. Analysis of nine ADHD candi-
date genes, chosen for their involvement in the regulation of
monoamine neurotransmitters, showed no association with
PD.297 By contrast, ADHD is associated with copy-number
variations in PARK2.298 Mutations in PARK2 occur in ~10%
to ~20% of cases with early-onset, sporadic PD.12,299 If PD
and ADHD are associated by virtue of an association with
PARK2, it might be expected that ADHD would be more
strongly associated with early- than late-onset PD. The study
byCurtin and colleagues2 did not find an association between
ADHD and age at onset of BG&C.

There is intriguing evidence that ADHD, like PD, may be
associated with Lewy pathology. Golimstok and colleagues169

reported that ten-year antecedent ADHD symptoms are signif-
icantly increased in patients with Lewy body dementia com-
pared to both controls and patients with Alzheimer’s disease.
Fluegge and Fluegge170 reported that antecedent severe ADHD
was associated with an increase in hospitalization for both
Lewy body dementia and Alzheimer’s disease. Between
~30%and ~50%of patients with AD also have Lewy pathol-
ogy.300 Thus, ADHDhas been associatedwith three neurode-
generative disorders, all of which are also associated with
Lewy pathology. Another intriguing finding is that α-synuclein
expression is increased in experimental models of traumatic
brain injury301–303 and by environmental neurotoxins that are
associated with both PD and ADHD.291,303 Although, as noted
above, the nature of the relationship between Lewy pathology
and neurodegeneration is unclear, these findings raise the possi-
bility that α-synucleinmay be a biomarker for both ADHD and
PD. Clinical-pathological studies necessary to evaluate this
hypothesis do not appear to have been undertaken.

Another possible explanation for an association between
PD and ADHD is that stimulant medication damages DA
neurons and either causes parkinsonism or exacerbates the
damage to DA neurons caused by other factors. The study
by Curtin and colleagues2 found that medical use of stimulant
medication in ADHD is associatedwith a 6- to 8-fold increase
in the risk for BG&C. One possible explanation for this
finding—in fact, the one preferred by the authors—is that
stimulant treatment is a marker for severe ADHD and that se-
vere ADHD is an independent risk factor for BG&C. In sup-
port of this hypothesis, Curtin and colleagues2 reported that
the risks for both BG&C and PD are significantly increased
1.8- and 2.3-fold, respectively, in ADHD patients with no
known history of prescription stimulant use or stimulant
abuse. By contrast, it is possible that ADHD patients in this
study had stimulant exposure that was not recorded in the
medical records. A particularly puzzling finding by Curtin and
colleagues2 is that the risk for BG&C is increased 8-fold among
persons with ADHD who had a known history of medical use
ofMPH alone. This finding is difficult to reconcile with the sub-
stantial evidence (discussed above) that MPH is less toxic than
meth/amph. Another curiosity in the Curtin and colleagues2

data is that the stimulant effect was significant for the com-
posite outcome BG&C—which included PD, secondary PD,
other diseases of the basal ganglia, and essential tremor—
but not for PD alone. Although the composite outcome was
used to increase diagnostic sensitivity, itmayhave also decreased
specificity.304 Thus, disorders distinct from PD may have con-
tributed to the stimulant effect. The nature of the relationship
between stimulant exposure in ADHD and risk for subsequent
development of PD obviously needs further investigation.

CONCLUSION
Epidemiological evidence indicates that persons with a diag-
nosis of ADHD have increased risk for the subsequent devel-
opment of Parkinson’s disease. The central question raised by
this observation is: what is the nature of this relationship?
The structural, functional, andmolecular neuroimaging stud-
ies reviewed here indicate that PD and ADHD share a com-
mon neurobiological substrate involving perturbations of
mesostriatal DA neurons. Another relevant finding is that
adults with ADHD and persons with prodromal PD or
PD-ES have similar neuropsychological profiles. The compar-
ative neuropsychology of these conditions reveals common
deficits in executive function, memory, attention, and inhibi-
tion. Neuroimaging studies reveal complex differences in
the brain structures and networks that mediate these deficits
in PD-ES and adult ADHD. However, frontostriatal circuits
are implicated in both. Collectively, these disparate lines of
evidence are consistent with the possibility that ADHD, pro-
dromal PD, PD-ES, and PD are sequential manifestations of a
common pathophysiological continuum.

Nevertheless, much additional research is needed to assess
this hypothesis. As noted previously, subject heterogeneity
and methodological differences make it difficult to compare
neuropsychological studies of adults with ADHD and per-
sons who have prodromal features or are in the early stages
of PD. Additional neuropsychological studies that employ a
uniform set of measures and methodologies in more homo-
genous subject samples are needed, and future studies of adults
with ADHD should be expanded beyond neuropsychological
testing to include other markers for prodromal PD (e.g.,
REM sleep behavior disorder, anosmia, constipation) and also
PD biomarkers (e.g., Lewy pathology). A related issue that has
not been taken into consideration is whether adult ADHD is a
unitary construct or one that subsumes distinct clinical enti-
ties. Notwithstanding the widely held view that ADHD is a
developmental disorder, current evidence indicates that
ADHD can occur in adults de novo.305 It is conceivable that
developmental- and adult-onset forms of ADHD may be dif-
ferentially associated with PD.

The mechanisms responsible for the association between
PD and ADHD are not known. The evidence reviewed here
does not support a strong genetic linkage. Thus, environmen-
tal exposures seem likely to mediate the association. Among
the possible environmental exposures, stimulant treatment
of ADHD is the most salient. Further research on the possible
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link between clinical use of stimulants and PD is urgently
needed. Avenues for future research are suggested above. If
an association between clinical use of stimulants and PD or
related disorders is confirmed, it could have serious implica-
tions for therapeutics and public health.

Declaration of interest: The author reports no conflicts of in-
terest. The author alone is responsible for the content and
writing of the article.
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