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 FGF Fibroblast growth factor 

 FORKO Follitropin receptor knockout 

 FSH Follicle stimulating hormone 

 g Gravitational force 

 GADD45 Growth arrest and DNA damage protein 45 

 GCNA1 Germ cell nuclear antigen 1 

 GDNF Glial cell-line derived neurotrophic factor 

 GFRα1 GDNF-receptor alpha 1 

 GnRH Gonadotropin releasing hormone 

 GOI Gene of interest 

 h Hour 

 HAT Histone acetyl transferase 

 H&E Haematoxylin & Eosin 

 IF Immunofluorescence 

 IFN Interferon 

 IGF Insulin-like growth factor 

 Igfbp3 Insulin-like growth factor binding protein 3 

 IHC Immunohistochemistry 

 IL Interleukin 

 IVF In vitro fertilization 

 JAM Junctional adhesion molecule 

 jsd Juvenile spermatogonial depletion 

 KO Knockout 

 LH Luteinizing hormone 

 LIF Leukaemia inhibitory factor 

 LTR Long terminal repeat 

 M Molar 

 MEFs Mouse embryo fibroblasts 

 mg Milligram 

 min Minute 

 mL Milliliter 

 mm Millimeter 

 mM Millimolar 

 Mmd2 Murine double minute 2 

 MMP Matrix metalloproteinase 

 mRNA Messenger RNA 

 MYCN Myc myelocytomatosis viral related oncogene 

 n Sample size/Number of mice 

 ng Nanogram 

 NGF Neural growth factor 

 nm Nanometer 

 nM Nanomolar 
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 n.s. Not significant 

 N-terminal Amino-terminal 

 OD Oligomerization domain 
 PA(I) Plasminogen activator (inhibitor) 

 PBS Phosphate buffered saline 

 PCR Polymerase chain reaction 

 PI3K Phosphatidyl-inositol-3 kinase 

 PKB Protein kinase B 

 PLZF Promyelocytic Leukaemia Zinc-Finger 

 POI Protein of interest 

 qPCR Quantitative real-time PCR 

 RE Responsive element 

 RNA Ribonucleic acid 

 Rpm Rounds per minute 

 RT Room temperature; Reverse transcriptase 

 SAC Spindle assembly checkpoint 

 SAM Sterile alpha motif 

 SCC Squamous cell carcinoma 

 SCF Stem cell factor  

 SCO Sertoli cell only syndrome 

 sec Second 

 Serpin Serine protease inhibitor 

 SNP Single nucleotide polymorphism 

 Sox8 SRY-related HMG-box protein 8 

 SSC Spermatogonial stem cells 

 SV40 Simian vacuolating virus 40 

 SVZ Subventricular zone 

 TAD Transactivation domain 

 TAF-4b Transcription initiation factor TFIID subunit 4B 

 TBC Tubulobulbar complex 

 TdT Terminal deoxynucleotidyltransferase 

 TGF Transforming growth factor 

 TID Transcription inhibitory domain 

 Timp1 Tissue inhibitor of metalloproteinases 1 

 TJ Tight junctions 

 TNFα Tumor necrosis factor alpha 

 Tris Trisamine 

 TSH Thyroid stimulating hormone 

 TUNEL TdT UTP nick end labeling 

 U Unit 

 UV Ultraviolet 

 VEGF Vascular endothelial growth factor 

 WT Wildtype 

 WT1 Wilms tumor protein 1 

 ZO-1/2 Zonula occludens protein 1/2 
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1 ABSTRACT 

The p53 family of transcription factors possesses diverge functions in tumorigenesis and 

development. The evolutionarily conserved role of the family member p63 to protect the 

genetic stability of germ cells and influence germ cell development is thought to be the 

ancestral protein function. Using p53, p63 and p73 knockout (KO) mice, the impact of these 

transcription factors on the female and male germ line was previously investigated. While 

mice deficient for p53 and p63 are fertile, loss of either all p73 isoforms or of the 

transcriptionally active TAp73 isoform alone was shown to cause infertility. Concerning its 

cause, female TAp73KO mice were reported to be infertile due to impaired ovulation, oocyte 

spindle defects and abnormal blastocyst development. However, the effect of TAp73 loss in 

the male germ line is unknown.  

Here we identify a hitherto unknown function of the transcription factor TAp73 in the 

development and maintenance of the adult male germ line. Working with total p73KO and 

isoform-specific KO mice, we find that TAp73, but not ΔNp73 deficiency, leads to a strong 

loss of developing sperm cells in the testicular tubules of mice 6 weeks and older. Whereas 

the basal spermatogonia and pachytene spermatocytes of the germ cell epithelium are 

unaffected (normal cell number and cell proliferation), the numbers of late spermatocytes and 

spermatids are strongly reduced in global p73- and TAp73-deficient testis. Concomitantly, a 

higher amount of apoptotic and immature sperm cells accumulate in the lumen of the 

epididymis of both KO mice, indicating aberrant premature sloughing of sperm cells from the 

seminiferous epithelium. This finding is reinforced by the observation that the sperm cell 

nurse cells, the Sertoli cells, display shortened cytoplasmic arms and abnormal vacuolated 

morphology by electron microscopy. Moreover, the seminiferous epithelium is loosened with 

loss of tight packaging of sperm cells and strongly disorganized Sertoli-sperm cell junctions. 

This impaired epithelial structure with aberrant loss of sperm cells appears to be the result of 

a defective blood testis barrier (BTB), as revealed by in vivo BTB permeability assay and 

aberrant Sertoli-Sertoli tight junctions. Functional loss of the BTB disturbs the epithelial 

polarity, the microenvironment of developing sperm cells and their upward migration via 

attachment-reattachment cycles in the germ cell nursing pockets of Sertoli cells. The 

molecular explanation for imbalanced junctional restructuring was obtained by quantitative 

whole genome expression profiling of TAp73 target genes comparing wildtype (WT) versus 

TAp73KO testes tissue. Loss of TAp73 induces upregulation of adhesion- and migration-
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related genes including integrins and protease inhibitors like Timp1 and Serpins, known to be 

involved in disassembly and reassembly of cell-cell junctions in the testis. TAp73 is primarily 

expressed in the sperm cell fraction and seems to act on Sertoli cells in a paracrine fashion, 

as revealed by isolated primary Sertoli cell culture, where upregulation of TAp73 target genes 

declined over time in long-term cultures.  

In conclusion, we identify for the first time an indispensable role of TAp73 in adult 

spermatogenesis. Specifically, TAp73 orchestrates a transcriptional program of adhesion and 

migration-related genes, ensuring the cohesion of the seminiferous epithelium and preventing 

premature sloughing of sperm. Together, this enables proper germ cell maturation. 

Conversely, TAp73 loss leads to severe attachment defects of developing sperm within the 

seminiferous epithelium, explaining the infertility of p73KO and TAp73KO mice.  
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2 INTRODUCTION 

2.1 Reproduction 

Germ cells are the key of sexual reproduction. Compared to other cell types, they have a 

unique genomic pattern, displaying half the number of chromosomes present in the parent 

cell. By fusion of a haploid sperm cell with a haploid oocyte, a diploid zygote is formed, giving 

rise to the generation of new offspring with the identical chromosomal number as the parent.  

However, the development of germ cells has to be controlled tightly, since they will be the 

basis for the following generation of each species. The process from stem cell to mature 

germ cell has to take place correctly in a certain environment and germ cells have to be 

protected against exogenous damage and mutations to assure genomic stability for the 

following offspring. Therefore complex organ systems have been developed in mammals, 

producing genetically stable germ cells.  

Since this thesis is addressing the male germ line, the focus is laid on the testis environment 

and development of sperm cells. Most of the genes and processes involved in sperm 

production are described to be conserved between humans and mice. Mice can therefore be 

used as a convenient model system for analyzing the male germ line.    

2.1.1 Structure of the male germ line in mice 

The testes of mammals are paired organs, giving rise to a 100 millions of spermatozoa per 

day (Xia et al., 2005b). The seminiferous tubules and the interstitial space of the testis are 

surrounded by a connective tissue capsule, the tunica albuginea. Germ cells are produced in 

the seminiferous epithelium of these tubules (refer to 2.1.2), which also harbours the germ 

cell supporting Sertoli cells (refer to 2.1.3) (Roosen-Runge, 1962). The tubules are enclosed 

by contractile myoid cells, also called peritubular cells, building the tunica propria together 

with layers of collagen and elastic fibers as well as immune cells like monocytes and mast 

cells (Clermont, 1958, Hermo et al., 1976). The interstitial space between the seminiferous 

tubules consists of the testosterone producing Leydig cells (refer to 2.1.4), macrophages, 

nerves as well as lymphatic and blood channels (Christensen et al., 1965, Borg et al., 2010). 

Besides macrophages, which are important for immune and inflammatory responses, 

dendritic cells, T cells and natural killer cells can be found in the interstitial area (Hutson, 

1994, Tompkins et al., 1998). The structure of the murine testis and the involved cell types 

are shown in Figure 2.1 (Cooke et al., 2002). After passing the developmental processes in 
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the seminiferous epithelium of the testicular tubules, spermatozoa are released in the tubular 

lumen. They travel to the rete testis and are transported to the head of the epididymis via the 

efferent duct system.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The epididymis is located directly next to the testis, wrapping itself around its total length 

(Figure 2.1). It can be separated into three parts, the head of the organ (caput), the body 

(corpus) and the tail (cauda) (Figure 2.2, after (Borg et al., 2010)). The histology of the 

epididymis shows that it is a long and highly convoluted tubule itself and can be classified into 

seven internal regions, according to their epithelial morphology and present tissue septae 

 
 A B 

 
 

A) The testis is surrounded by a connective tissue capsule, the tunica albuginea. The seminiferous 
tubules are winding themselves through the entire testis. They harbour the sperm cells and transport 
the released spermatozoa towards the rete testis into the epididymis. The epididymis is located close to 
the testis, spanning itself over the entire length of the testis. Like the testis it consists of highly 
convoluted tubules. Sperm cells undergo further maturation while travelling through the epididymis and 
are released into the vas deferens upon ejaculation.  
B) The cellular structure of the testis is depicted. Seminiferous tubules are limited by the basement 
membrane and the surrounding PTMs (peritubular myoid cells), which together build the tunica propria. 
The seminiferous epithelium of the tubules consists of Sertoli cells (SC - yellow cells, outlined with red), 
spanning through the entire epithelium, and of the developing sperm cells at different maturation stages 
(green cells) embedded in the SCs. Tails of spermatozoa are reaching into the tubular lumen (dark 
green cells). After release from the seminiferous epithelium into the seminiferous fluid they will be 
transported towards the epididymis. Another type of somatic cells, the Leydig cells (LC - purple cells) 
are located next to blood vessels in the interstitial space between the tubules.  
(modified after Cooke and Saunders, 2002) 
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Fig. 2.1 Organization of the testis structure 
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(Soranzo et al., 1982, Takano, 1980). After further maturation steps mature spermatozoa are 

released in the vas deferens during the ejaculation process.     

 

 

 

 

 

 

 

 

 

 

 

 

 

2.1.2 Spermatogenesis 

Mice reach fertility at around 6 to 7 weeks of age. At this time point the first wave of 

spermatogenesis is completed and mature spermatozoa are present (Bellve et al., 1977, 

Kramer et al., 1981). From now on sperm cells will be produced continuously in the adult 

testis. The complex process of spermatogenesis can be divided into 3 phases: the 

spermatogonial and meiotic phases (Ia and Ib), spermiogenesis (II) and spermiation (III) 

(Cooke et al., 2002).  

The spermatogonial phase is necessary to maintain the stem cell pool of the testis throughout 

life. Spermatogonia are localized close to the basement membrane of the seminiferous 

tubule, accompanied by Sertoli cells. They undergo mitotic divisions to replace themselves 

frequently (self-proliferation) and to provide a constant supply of a basic population for the 

following meiotic steps to finally produce mature spermatozoa. Dependent on functional 

criteria, they can be classified into spermatogonial stem cells (As), able to colonize a recipient 

 

 

The epididymis can be divided into three main parts: caput, corpus and cauda epididymidis. 
Spermatozoa travelling through the rete testis enter the epididymis at the head (caput). While 
travelling through the caput and corpus epididymidis, spermatozoa undergo further post-
testicular maturation steps. The tail of the epididymis (cauda) is thought to mainly function as 
storage for the mature, still immotile sperm cells. (modified after Borg et al., 2010) 
  

   Caput Corpus Cauda 

Fig. 2.2 Structure of the epididymis 
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testis after transplantation, and differentiated spermatogonia. The latter ones are divided into 

type A and B spermatogonia, according to their morphology and gene expression pattern. 

Type A spermatogonia divide asymmetrically into type A and B spermatogonia (de Rooij, 

2001, Oatley et al., 2006). With type B spermatogonia, meiosis is initiated.  

Meiosis can be divided into two cell divisions and, compared to mitosis, the final outcome is 

the bisection of the chromosomal number from diploid to haploid. Meiosis I starts with the 

separation of the homologous chromosome pairs and meiosis II separates the sister 

chromatids of one chromosome. Therefore 4 haploid gametes will evolve out of one 

spermatogonium. Meiosis I consists of 5 phases based on cytological features and 

chromosome dynamics: prophase, metaphase, anaphase, telophase and cytokinesis 

(Baarends et al., 2001). The prophase takes 90% of the time during meiosis I and can further 

be divided into 5 stages, called leptotene, zygotene, pachytene, diplotene and diakinesis. 

During these stages highly condensed homologous chromosomes (each build of two sister 

chromatids) will assemble longitudinally to each other and will be joined by the synaptonemal 

complex (SC). Now crossing over between homologous chromatids can occur and 

recombination events will increase the genetic variability. This bivalent structure, containing 

four chromatids, is also called chiasmata or tetrad stage and additionally helps positioning the 

chromosomes at the meiotic spindle (Cobb et al., 1998, Cohen et al., 2006). By reaching the 

leptotene stage, germ cells are now called spermatocytes I and start moving towards the 

luminal part of the seminiferous epithelium. After attachment of paired chromosomes to the 

spindle (metaphase), movement of single chromosomes to opposite poles of the spindle 

(anaphase), uncoiling of chromosomes into loose chromatin (telophase), and separating of 

the two poles into two new daughter cells (cytokinesis), the gametes are now called 

spermatocytes II. These cells still contain a diploid DNA content, but only a haploid number of 

chromosomes, each cell possessing different genetic information. With completing the 

second meiotic division, which is comparable to the mitotic process, spermatids finally 

contain a haploid DNA content with a haploid chromosomal number (Handel et al., 1999). 

These initial meiotic steps are crucial for the production of viable gametes and any failure will 

result in the absence of sperm or the production of aneuploidic sperm cells.  

Round postmeiotic spermatids will subsequently undergo spermiogenesis. Experiencing 

extensive morphological changes, they gain polarity, develop into elongated spermatids and 

finally into spermatozoa. Structural processes of spermiogenesis include the formation of the 

acrosome, which contains the enzymes necessary for the sperm to penetrate the oocyte, 

condensation and elongation of the nucleus, development of a flagellum and the elimination 

of cytoplasm (Ward et al., 1991, Cooke et al., 2002). The excess cytoplasm together with 
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packed RNA and organelles is also called residual bodies and is phagocytosed by Sertoli 

cells. Astonishingly, the size of the spermatid head decreases to around 5% of a somatic cell 

nucleus. Nuclear condensation is thereby achieved by removing the histones and replacing 

them first with transition proteins Tnp1 and Tnp2 and finally with the protamines PRM1 and 

PRM2, which are unique for spermatids. The tightly packed chromatin is transcriptionally 

inactive (Brewer et al., 1999, Ward et al., 1991). The reshaping of the sperm cell will ensure 

its future motility and ability to fuse with the oocyte. 

When we look at the seminiferous epithelium of the murine testis, we find a certain 

positioning and defined association of sperm cells in the already described stages; the 

spermatogonia at the very basal level, meiotic cells in the next layer, round spermatids 

following and close to the lumen elongated spermatids and spermatozoa (Leblond et al., 

1952, Oakberg, 1956). Therefore sperm cells migrate from basal to luminal, while developing 

from stem cells to spermatozoa (Figure 2.3, after (Cooke et al., 2002)). Differentiating sperm 

cells remain connected to each other by cytoplasmic bridges. In more detail twelve stages of 

sperm cells (I-XII) are described in mice, according to the histology of the cell. The 

occurrence of these twelve cell stages over time in a given area of the tubule are defined as 

the “cycle of the seminiferous epithelium” (Leblond et al., 1952, Oakberg, 1957).    

 

 

 

 

 

 

 

 

 

The first wave of sperm production is synchronous throughout the testis. If we therefore look 

at a particular cross-section of a tubule on histological level all germ cells will show the same 

developmental stage. In mice differentiated spermatogonia appear postnatal at day 8 pp 

(post-partum). Meiosis I starts 10 days after birth and secondary spermatocytes can be seen 

by day 18 pp. Round spermatids are already found at day 20 pp, but spermiogenesis only 

 

 

One columnar Sertoli cell can wrap its 
cytoplasmic arms around several 
sperm cells of different stages. Sperm 
cells undergo maturation from 
spermatogonia to elongated 
spermatids. They migrate from basal 
to luminal while undergoing meiosis 
and spermiogenesis. Tight junctions 
(arrowhead) between adjacent Sertoli 
cells divide the seminiferous 
epithelium into two compartments: the 
stem cell compartment (stem and pre-
meiotic cells) and the developmental 
compartment (meiotic and 
spermiogenic cells). (modified after 
Cooke and Saunders, 2002) 
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Fig. 2.3 Sperm cell stages 
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starts at day 30 pp. Around 5 to 7 weeks after birth spermatozoa can be found and are from 

now on produced periodically throughout life time (Figure 2.4, after (Barakat et al., 2008)) 

(Bellve et al., 1977, Nebel et al., 1961).  

Mature, but immotile spermatozoa are finally released from the seminiferous epithelium into 

the tubular lumen by spermiation. Through progressive loss of adhesive cell junctions sperm 

cells are able to detach from the Sertoli cells. At this point sperm cells are structurally 

complete, but functionally immature (O'Donnell et al., 2011).  

Spermatozoa move towards the rete testis and into the caput epididymidis by peristaltic 

contraction achieved by the tunica propria. In the epididymis post-testicular sperm maturation 

takes place. This includes remodelling of the membrane lipid composition, removal and 

addition of proteins to the sperm and post-translational modifications like glycosylation and 

phosphorylation (Aitken et al., 2007, Baker et al., 2005, Schlegel et al., 1986). Sperm cells 

obtain their functional competence while travelling through the whole length of the epididymis. 

The cauda epididymidis is described to mainly function as storage of mature, still immotile 

spermatozoa (Jones, 1999). Only by ejaculation and residence in the female reproductive 

tract they gain motility, undergoing a process called capacitation, and are able to fertilize the 

egg through the acrosome reaction (Austin, 1952).     

 

 

 

 

 

 

 

 
 

First wave of spermatogenesis –  
the following stages are depicted: 
 

0 dpp: gonocytes 
4 dpp: spermatogonia, type A 
6 dpp: spermatogonia, type B 
8 dpp: pre-leptotene spermatocytes 
10 dpp: zygotene spermatocytes 
16 dpp: pachytene spermatocytes 
26 dpp: round spermatids 
42 dpp: elongated spermatids  

Prenatal Sertoli cells are mitotically active and cease to divide, when spermatogenesis starts around 
day 8-10. They get terminally differentiated and form Sertoli–Sertoli cell tight junctions. (modified after 
Barakat et al., 2008) 

Fig. 2.4 Germ cell development 
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2.1.3 Sertoli cells 

Sertoli cells were first described in 1865, by Enrico Sertoli. Sertoli cells sit on the basement 

membrane of the testicular tubules, their cytoplasmic arms reaching through the entire 

seminiferous epithelium. By enveloping all surrounding germ cells they are thought to have a 

crucial nursing role, providing physical support, nutrients and paracrine signals for the 

development of the sperm cells (Griswold, 1998). An adult Sertoli cell is able to get in contact 

with five different sperm cell types, supporting 30 to 50 germ cells in total. Developing sperm 

cells migrate from the basement membrane to the apical lumen of the tubule, all time staying 

in contact with the Sertoli cells. This process is facilitated by restructuring the Sertoli cell 

cytoskeleton and Sertoli-germ cell junctions. Sertoli cells also trigger spermiation, the release 

of these immature spermatozoa into the lumen (Mruk et al., 2004). They are thought to only 

possess constant mitotic activity during the maturation stages in testis development (Kluin et 

al., 1984). With puberty, the round-shaped progenitor cells elongate and mature Sertoli cells 

form tight junctions between them (Figure 2.3 and 2.4). However, even differentiated Sertoli 

cells were described to loose proliferative capacity upon adulthood, adult Sertoli cells 

transplanted into Sertoli defective testes were able to restore the acceptor Sertoli cell pool 

and spermatogenesis in infertile mice (Shinohara et al., 2003). Additionally, during primary 

cell culture, adult Sertoli cells were reentering the cell cycle and could be maintained for 

several months under optimized conditions before going into senescence (Ahmed et al., 

2009, Chui et al., 2011). Therefore, mature Sertoli cells were described to be terminally 

differentiated, quiescent cells that contain subpopulations with stem cell-like character and 

proliferative capacity (Hayrabedyan et al., 2012).   

2.1.3.1 Sertoli cells and the spermatogonial niche 

Spermatogonial stem cells (SSCs) are the basis of spermatogenesis. To maintain fertility 

throughout life time, a balance between self-renewal and differentiation of the SSCs has to be 

ensured. Therefore SSCs reside in a specific microenvironment, the so called stem cell 

niche. On the one hand maintenance of self-renewal is dependent on intrinsic gene 

expression within the stem cells. For example the transcription factor Plzf (Promyelocytic 

Leukaemia Zinc-Finger) acts as transcriptional repressor to support self-renewal (Buaas et 

al., 2004, Costoya et al., 2004). And TAF-4b, a germ cell specific subunit of the RNA 

polymerase complex (TFIID), is essential for spermatogonial stem cell proliferation (Falender 

et al., 2005). On the other hand self-renewal and differentiation of SSCs are strongly 

dependent on extrinsic signals, mainly coming from the Sertoli cells. By building tight 
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junctions between themselves, Sertoli cells divide the seminiferous epithelium into a basal 

compartment harbouring spermatogonia and an adluminal compartment containing the 

meiotic and spermiogenic germ cells (also refer to 2.1.3.2). The basal compartment serves as 

niche for the SSCs and only there self-renewal and maintenance is possible. During early 

postnatal development, while Sertoli cells are maturing, the SSC niche develops (Ogawa et 

al., 2005, Dadoune, 2007). Sertoli cells secrete several soluble factors, influencing SSC self-

renewal or differentiation. GDNF (glial cell-line derived neurotrophic factor) is a member of 

the TGF-β family and is produced and secreted by Sertoli cells. It binds to GDNF receptors 

on SSCs, like GFRα1 or c-RET tyrosine kinase receptor, which in turn will activate the PI3-

kinase (phosphatidyl-inositol-3) or Src tyrosine kinase pathway, ensuring cell survival. GDNF 

stimulates SSC proliferation and is important for maintenance of the self-renewal ability of 

SSCs during the perinatal period of development (Meng et al., 2000, Naughton et al., 2006, 

Sariola et al., 2003). Differentiation of SSCs beyond type A spermatogonial stages is enabled 

by another Sertoli cell product, the stem cell factor SCF (steel locus). Upon spermatogenesis 

SCF is produced, activating the c-KIT tyrosine kinase - PI3K/PKB/AKT survival pathway 

(Blume-Jensen et al., 2000, Ohta et al., 2000). It is hypothesized that GDNF signalling 

activates the transcriptional repressor Plzf in undifferentiated spermatogonia and that SCF 

signalling might neutralize this repression to drive differentiation (Berruti, 2006). The 

transcription factor ERM (Ets related molecule) is expressed in Sertoli cells during the 

pubertal period and is required for maintenance of self-renewal and spermatogenesis in adult 

mice throughout life (Chen et al., 2005).     

2.1.3.2 The blood testis barrier 

The blood testis barrier (BTB) acts as a boundary between proliferating diploid 

spermatogonia at the basement membrane and differentiating haploid spermatocytes and 

spermatids migrating towards the tubular lumen. It therefore creates a specific 

microenvironment necessary for the SSCs (refer to 2.1.3.1) and protects the developing 

sperm cells against harmful agents and an auto immune response against the unique 

antigens of the testis. Different junctional complexes are part of the BTB: gap junctions, 

desmosomal-like junctions, tight junctions, and the so called basal ectoplasmic specialization 

(ES) as well as the basal tubulobulbar complex (TBC). In contrast to other somatic cells, tight 

junctions of Sertoli cells are found closest to the basement membrane and help to maintain 

an impermeable barrier and cell polarity. In murine testis, the transmembrane proteins of the 

occludin-, claudin- and JAM-family are linked to the cytoskeleton via the adaptors ZO-1/ZO-2 

(Xia et al., 2005b). Coexisting with tight junctions the basal ES can be found at the BTB. The 
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basal ES exists as homotypic interactions between adherens junction (AJ) transmembrane 

proteins like cadherins (calcium-dependent junctions) and nectin-2. Thereby N- or E-cadherin 

interact with γ-catenin or β-catenin that are linked to the actin cytoskeleton via α-catenin. 

Nectin-2 is linked to the actin filament bundles (filamentous actin = F-actin) via afadin (Lee et 

al., 2003, Ozaki-Kuroda et al., 2002, Takai et al., 2003). When entering meiosis, developing 

spermatocytes have to pass the BTB and migrate to the upper layers of the seminiferous 

epithelium (Russell, 1977). This is possible by transient opening (dissolving) of the junctions 

and closing (regenerating) them directly after spermatocytes have passed. The engagement 

and disengagement theory states that remodelling processes and coordination between 

proteins of the ES and TJ enable the movement of pre-leptotene spermatocytes across the 

BTB (Yan et al., 2005). Additionally, integrins have been discussed being part of the BTB. 

They are heterodimeric transmembrane receptors, composed of α and β subunits. Several of 

these subunits, like α6 β1 integrin, have been found in testis, but it is not yet sure if they are 

primarily located to cell-matrix (FAC – focal adhesion complex, hemidesmosomes) or cell-cell 

(i.e. basal ES) junctions (Giebel et al., 1997, Salanova et al., 1995).  

2.1.3.3 Sertoli germ cell junctions 

Developing spermatocytes and spermatids are attached to Sertoli cells via AJs and 

desmosome-like (hybrid junction between gap junctions and desmosomes) junctions. When 

germ cells migrate from basal to luminal, extensive junction-restructuring events between 

Sertoli and sperm cells take place during the seminiferous cycle. Exchange of ions and small 

molecules between Sertoli and germ cells is enabled by gap junctions, channels consisting of 

connexin subunits (Mruk et al., 2004). The tightest adhesion between Sertoli cells and germ 

cells is observed at the apical junction (Wolski et al., 2005). It connects the head of the 

spermatozoa and elongated spermatids with Sertoli cells, the sperm tail reaching into the 

lumen of the tubule. These junctions are adherens-like junctions and specific for the testis, 

called apical ectoplasmic specialization (apical ES). Like the basal ES, which is part of the 

BTB (refer to 2.1.3.2), they consist of a similar pool of junctional proteins and have a certain 

cytoskeletal structure. The apical ES is an actin-based hybrid anchoring junction sharing 

structures of tight junctions, adherens junctions and focal contacts (Yan et al., 2007). In 

contrast to the basal ES the apical ES does not include TJ as such. However, TJ 

transmembrane proteins like the junctional adhesion molecule-B and C (JAM-B/C) and the 

coxsackievirus and adenovirus receptor CAR have been found at the apical ES, which might 

influence spermatid polarization and orientation (Coyne et al., 2005, Gliki et al., 2004, Mirza 

et al., 2006). Also different to the basal ES, you find heterotypic actin-based adherens 
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junctions with nectin-2 on Sertoli cells connecting to nectin-3 on sperm cells (Takai et al., 

2003). Another intensively studied junction is the α6β1-integrin-laminin333 complex. Laminin 

is a heterotrimeric glycoprotein of three chains, usually found at FACs of the cell-matrix 

interface and within the basement membrane (Koch et al., 1999, Salanova et al., 1995, Yan 

et al., 2007, Yan et al., 2006). Functionally, the apical ES is important for correct positioning 

of the sperm cell, it influences the elongation process of spermatids and retains the sperm 

cells until spermiation (Mruk et al., 2004, Yan et al., 2007).  

To enable the release of spermatazoa, part of the apical ES has to be exchanged into the 

apical TBC. The TBC is a cytoplasmic evagination of the spermatid head with tubular and 

bulbous portions, which are surrounded by a branched actin network and endoplasmic 

reticulum (ER). Functions of the TBC include elimination of cytoplasm to decrease the 

volume of the spermatid, endocytosis and recycling of junctional molecules (like nectins or 

integrins), shaping of the acrosome and transiently anchoring spermatids to the cytoplasmic 

processes of Sertoli cells before preparing their release into the tubular lumen. By 

cytoskeletal remodelling and disruption of the apical ES and the TBC, spermiation takes 

place (Russell, 1979b, Russell, 1979a, Upadhyay et al., 2012). 

2.1.3.4 The secretory function of Sertoli cells 

Sertoli cells are secretory cells and support germ cell development, growth and movement 

via various groups of proteins. These include proteases and protease inhibitors, hormones 

and paracrine factors, growth factors and energy substrates (Mruk et al., 2004). 

Proteases and protease inhibitors are involved in many cellular processes, like repair, growth, 

development and germ cell movement. The protease Cathepsin L for example was described 

to play a role during spermiogenesis at the apical ES, its expression peaking at the 

developmental stage of elongated spermatids (Chung et al., 1998). An increase in overall 

serine protease activity in in vitro sperm - Sertoli cell adhesion experiments shows that 

proteases are also required for junction assembly (Mruk et al., 1997). Proteases and their 

antagonists, the protease inhibitors, are produced by Sertoli cells, controlling junction 

assembly and disassembly upon secretion (Wright et al., 1989, Le Magueresse-Battistoni, 

2007). 

Cytokines, like tumor necrosis factor TNFα, interleukins (IL-1, IL-6, IL-11), interferons (IFN-α), 

growth factors (NGF, FGF) and transforming growth factors of the TGF-β family are also 

secreted by Sertoli cells. They can act in an either paracrine or autocrine fashion, supporting 

Sertoli cell proliferation, sperm cell movement, junction remodelling and differentiation (Xia et 
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al., 2005b). TNFα, for example, can counteract germ cell apoptosis and inhibits TJ formation 

at the BTB (Pentikainen et al., 2001, Siu et al., 2003).  

The glycoprotein-hormones activin and inhibin belong to the TGF-β superfamily and are both 

expressed in Sertoli cells. They are dimeric proteins formed by two peptide chains, which are 

linked via a disulfide bond. Activins form homo- or heterodimers using the β-subunits βA, βB 

and βC. Inhibins contain one of these β subunits and one α-subunit (de Kretser et al., 2001, 

de Kretser et al., 2004). Like FSH (refer to 2.1.4) and a big group of growth factors (i.e. FGF, 

IGF, EGF, TGFα), activins stimulate proliferation and growth of Sertoli cells during 

development (Boitani et al., 1995, Buzzard et al., 2003, Petersen et al., 2001). Activins, 

mainly expressed by Sertoli cells, but also found in germ cells, influence germ-cell 

maturation, i.e. by stimulation of spermatogonial proliferation or by maintaining mitochondrial 

morphology of germ cells beyond the pre-leptotene stage. Inhibin B (α-βB dimer) is the major 

inhibin in testis and is produced by adult Sertoli and Leydig cells (de Kretser et al., 2004, de 

Kretser et al., 2001). Inhibins are able to antagonize activins directly by binding to the activin 

type II kinase receptors and blocking type I kinase receptor recruitment, subsequent Smad 

phosphorylation and its nuclear import and transcriptional activity (Lewis et al., 2000). 

Additionally, activin activity can be inhibited by another TGF-β family member Follistatin as 

well as by FSH (Hashimoto et al., 1997). Inhibin B is also thought to inhibit FSH-secretion 

from the pituitary gland (Figure 2.5, after (Borg et al., 2010)).  

Nourishing germ cells via their secretory products is another important task of the Sertoli 

cells. They provide amino acids, carbohydrates, lipids, vitamins and metal ions. Sertoli cells 

are able to efficiently metabolize glucose to lactate, which is the preferred energy source of 

germ cells (Robinson et al., 1981). The transport of some nutrients is likely enabled by gap 

junctions between Sertoli and sperm cells (Mruk et al., 2004).  

The seminiferous fluid within the tubular lumen is also produced and secreted by Sertoli cells. 

It supports spermiation by sheering forces, provides the nutritional and hormonal 

microenvironment for sperm development and transports released spermatozoa towards the 

epididymis (Mruk and Cheng, 2004).  

2.1.4 Hormonal regulation 

Testicular function is not only controlled by intra-testicular paracrine signals, but also by 

extra-testicular, circulating hormones of the brain. The hypothalamus-pituitary-testis hormone 

axis regulates spermatogenesis. Gonadotropin releasing hormone (GnRH) is produced by 

the hypothalamus and is increasing with puberty. It activates the production of the 
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gonadotropins, follicle stimulating hormone (FSH) and luteinizing hormone (LH), in the 

pituitary gland (Figure 2.5, after (Borg et al., 2010)).  

FSH is only regulating one cell population in the testis, the Sertoli cells, which express the 

correspondent receptor on their surface. It is necessary for Sertoli cell proliferation and it 

stimulates their aromatase activity and production of inhibin, lactate, transferrin and androgen 

receptor (AR) (Bicsak et al., 1987, Mita et al., 1982, Skinner et al., 1989). Besides FSH other 

endocrine factors like TSH (thyroid stimulating hormone) or Prolactin have been implicated in 

Sertoli cell proliferation and differentiation, TSH being able to interact with the FSH receptor 

(Scarabelli et al., 2003, Van Haaster et al., 1992). LH on the other hand is stimulating Leydig 

cells, positioned in the interstitial space of the testis. Upon binding of LH, Leydig cells start to 

produce testosterone, its synthesis increasing strongly during puberty. The only cell type in 

the seminiferous epithelium expressing the testosterone-responsive androgen receptor (AR), 

are the Sertoli cells. The paracrine regulation of Sertoli cells by an adequate level of intra-

testicular testosterone is required for BTB function, meiosis and post-meiotic development of 

sperm cells (Meng et al., 2005, Tan et al., 2005).  

 

 

 

 

 

 

 

 

 

 

 

 

 

The hormone axis is controlled by negative feedback loops through testosterone from Leydig 

cells and inhibin B from Sertoli cells, the first one regulating LH levels and the second one 

 
 

Sperm maturation is influenced by the 
hormonal hypothalamic-pituitary-testis 
axis. Gonadotropin releasing hormone 
GnRH is produced by the 
hypothalamus and activates secretion 
of the gonadotropins LH and FSH from 
the pituitary gland. In turn LH is 
activating Leydig cells to produce 
testosterone. FSH and testosterone 
directly influence Sertoli cells, which 
communicate with sperm cells and 
ensure sperm cell development. 
Additionally, two negative regulatory 
feedback loops are described for the 
hormonal regulation of the testis. 
Testosterone, secreted from Leydig 
cells, and Inhibin B, produced by 
Sertoli cells, act at the hypothalamus 
and the pituitary gland, modulating 
GnRH, LH and FSH secretion. 
(modified after Borg et al., 2010)    

Fig. 2.5 Hormonal control of 
spermatogenesis 
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FSH levels (Figure 2.5, after (Borg et al., 2010)). Testicular cells are also the source of 

estrogens and do express estrogen receptors. Immature Sertoli cells are able to produce 

estrogen via their aromatase activity, the enzyme P450 converting androgens to estrogens. 

During adulthood Leydig and germ cells take over estrogen production. However, even if 

male P450 knockout (KO) mice become infertile with age, the direct influence of estrogens on 

spermatogenesis has not been described yet (Aschim et al., 2004, Carreau et al., 1999, 

Robertson et al., 1999, Rommerts et al., 1982).  

2.1.5 Infertility models 

As described in chapter 2.1.1 to 2.1.4, spermatogenesis is a complex process requiring many 

steps, signals and cell types. Any mistake or missing action during sperm maturation will 

subsequently affect the sperm quality and/or quantity. There are many mutant mouse models 

known, where specific processes during spermatogenesis are impaired, resulting in 

malfunctioning of sperm cells or infertility. Dependent on the phenotype different types of 

male infertility are classified.  

The loss of all germ cells is referred to as Sertoli cell only syndrome (SCO). As an example, 

in juvenile spermatogonial depletion (jsd) KO mice one wave of spermatogenesis is 

completed, but further sperm cycles are impaired since type A spermatogonia fail to 

differentiate. Adult testes therefore only contain Sertoli cells (Boettger-Tong et al., 2001). A 

comparable phenotype can be observed for ERM KO mice, which fail to develop new sperm 

cell layers after 6 weeks of age (also refer to 2.1.3.1) (Chen et al., 2005). 

When sperm cells are missing from the seminiferous epithelium at a certain developmental 

stage (i.e. meiosis, spermiogenesis), it is defined as germ cell arrest. Examples for meiotic 

arrest phenotypes are mice depleted of genes encoding for components of the synaptonemal 

complex or the DNA repair machinery (also refer to 2.1.2). Dmc1h (disrupted meiotic cDNA1 

homologue, involved in strand exchange) KO mice show chromosome synapsis errors during 

recombination, and spermatocytes with unresolved DNA breaks are eliminated by p53-

independent apoptosis (Odorisio et al., 1998, Pittman et al., 1998, Yoshida et al., 1998). The 

PI3 kinase ATM (ataxia telangiectasia mutated homologue) is recruited to double strand 

breaks (DSBs) at the site of meiotic recombination and loss of ATM leads to infertility in mice 

and man (Barlow et al., 1998). Arrest in spermiogenesis for example is seen in mice deficient 

of protamines (also refer to 2.1.2), since DNA compaction cannot be performed and therefore 

development of spermatids is lost. Sperm cells do not develop beyond the first step of 

spermiogenesis in Prm1 and Prm2 KO mice as well as in Crem KO mice, which are depleted 

of the transcriptional regulator “cyclic AMP responsive element modulator” (Crem) that is 
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involved in regulation of protamine expression (Blendy et al., 1996, Cho et al., 2001, Ha et 

al., 1997). 

In hypospermatogenic testes all sperm stages are present, but at least one type in reduced 

numbers. Additionally, normal tubules can be located close to tubules missing germ cell 

populations. Hypospermatogenesis includes the loss of a gene either involved in germ cell 

development, Sertoli cell function or germ cell colonization. For example, FORKO mice 

lacking the FSH receptor, usually expressed on Sertoli cells (refer to 2.1.4), display reduction 

of Sertoli cells by 50%, accompanied by reduced spermatid numbers and aberrant 

morphology of sperm. These mice are subfertile (Krishnamurthy et al., 2000). A similar 

phenotype is described for men harbouring an inactivating mutation of the FSH receptor 

(Tapanainen et al., 1997). 

A defect in Sertoli-sperm cell adhesion can also lead to loss of sperm cells. Apical junction 

failure may result in abnormal sperm retention in the testis (spermiation failure). In Sox8 KO 

mice resolution of the apical ES is impaired resulting in increased elongated spermatid 

retention (O'Bryan et al., 2008). Additionally, premature sloughing of sperm cells is often the 

reason for adhesion defects. The enzyme α-mannosidase IIx synthesizes a carbohydrate N-

glycan, which is necessary for the interaction between germ and Sertoli cells. Loss of this 

enzyme leads to premature release of sperm cells from the seminiferous epithelium (Akama 

et al., 2002).  

If no defect in testicular development can be observed and sperm morphology as well as 

sperm count seem to be relatively normal, but mice are nevertheless infertile, changes in 

post-testicular maturation of sperm cells can be the reason. This can be due to defects in 

epididymal formation and fluid resorption or because of an impaired sperm function when 

they enter the female reproductive tract, i.e. impaired acrosome reaction or motility.    

The final sperm outcome can be divided into 4 categories: oligoospermia – reduced sperm 

numbers; azoospermia – no sperm production; teratospermia – sperm with abnormal shape 

(i.e. globozoospermia: loss of acrosome); asthenospermia – sperm with abnormal motility 

pattern (Borg et al., 2010, Cooke et al., 2002).  

Defects at many different stages of sperm development can lead to infertility. To find the 

cause of a specific testicular phenotype in mice, a detailed analysis has to be carried out.  

2.2 The p53 family 

The p53 family of transcription factors includes three family members, p53, p63 and p73. All 

of them share common features in structure and function, transcriptionally regulating target 
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genes involved in cell cycle progression, apoptosis and development. They were also 

intensely studied to show their own specific expression pattern, molecular function and 

influence on carcinogenesis and development.  

2.2.1 Evolution and structure of the p53 family 

Evolutionary, the existence of a combined p63/p73-like ancestor gene is first observed in the 

single cell choanoflagellates and the early metazoan sea anemone. This ancestral gene was 

duplicated in the early vertebrate lineage of cartilaginous fish, giving rise to the origin of the 

p53 gene. A second duplication of the ancestor gene with development of bony fish produced 

separate genes for p63 and p73. With evolution of amphibians, reptiles and mammals, the 

gene loci of p63 and p73 underwent changes, dramatically increasing the intron size. The 

p53 gene was not as strongly affected and remained relatively small (Belyi et al., 2010).   

p53 was the first family member to be discovered in 1979. In SV40-transformed cells, p53 

was found to bind to the SV40 large T-antigen (Lane et al., 1979, Linzer et al., 1979, Melero 

et al., 1979, Kress et al., 1979). Structurally, three important functional domains can be 

described for the p53 protein: the transactivation domain TAD (aa 1-42), the DNA-binding 

domain DBD (aa 102-292) and the oligomerization domain OD (aa 324-355) (Figure 2.6 B 

and C, after (Jacobs et al., 2005)). The amino-terminal TA domain is necessary for 

transcriptional activation or repression of target genes, associating with transcriptional co-

factors like the TATA-binding protein and the histone acetyl transferase (HAT) p300/CBP 

(Chang et al., 1995, Teufel et al., 2007). The hydrophobic amino acids Leucin 22 and 

Tryptophan 23 are indispensable for the transactivating function of human p53 (Lin et al., 

1994). The DBD enables p53-binding to p53 responsive elements (p53RE) in introns or in the 

promoter region of target genes (Bourdon et al., 1997, el-Deiry et al., 1992). To carry out its 

function as a transcription factor, p53 has to build a tetramer, which is possible by forming a 

dimer of two dimers through its carboxy-terminal oligomerization domain (Jeffrey et al., 1995, 

Kitayner et al., 2006). Until 2005 only one promoter and three splice variants of the p53 gene 

were described: full length protein (FLp53), C-terminal truncated isoform p53i9 (no 

transcriptional activity) and N-terminal truncated isoform Δ40p53 (transcriptional activity 

through a second identified TA domain in aa 43-63), the two latter produced by alternative 

splicing of intron 9 or 2 (Flaman et al., 1996, Ghosh et al., 2004, Zhu et al., 1998b). In the 

past years additional information about the expression of new p53 isoforms, arising from a 

second internal promoter located in intron 4, named Δ133p53, was gained (Bourdon et al., 

2005). 
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A) Depicted are the gene loci of the p53 homologues p63 and p73. In both cases two promoters 
can be used to transcribe two N-terminally differentiating isoforms. Using the promoter upstream of 
exon 1 the TA-isoforms with the transactivation domain (legend in C) are produced, while ΔN-
isoforms, transcribed from the internal promoter in intron 3 and using an alternative 3´exon, lack the 
TA domain. By differential splicing of the C-terminal exons multiple isoforms are produced. The full 
length isoform is referred to as TAp63/p73α.  
B) Comparison of the domain structure of p53, p63α and p73α. All TA p53 family members possess 
three highly conserved domains: the transactivation (TA) domain, the DNA binding domain (DBD) 
and the oligomerization domain (OD). α-isoforms of p63 and p73 additionally harbour the sterile 
alpha motif domain (SAM) as well as the transcription inhibitory domain (TID, shown in red). ΔN-
isoforms lack the N-terminal TA domain. For colour legend refer to C). 
C) Colour legend for the protein domains of the p53 family. 
D) Alignment of the domains shows highest homology for the DBD between p63 and p73. 
Evolutionary, p63 and p73 are more closely related to each other than to p53. The ancient p53 
family gene locus was thought to be a p63/p73 like gene (Dotsch et al., 2010, Levine et al., 2011). 
(modified after Jacobs et al., 2004) 
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Fig. 2.6 The p53 family: gene loci and domain structure 
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A similar dual gene structure was already described for p63 and p73. The two genes were 

identified in 1997, but it has to be stated that more research was done on the isoforms of p63 

and p73 compared to p53 and that the pool of expressed isoforms differs significantly from 

p53 (Kaghad et al., 1997, Schmale et al., 1997, Trink et al., 1998, Yang et al., 1998). As 

result of two different promoters within the p63 and p73 gene locus, we can categorize the 

expressed isoforms into TA- and ΔN-isoforms (Figure 2.6 A, after (Jacobs et al., 2004)). The 

ΔN-isoforms use an internal promoter, lying within intron 3, giving rise to an amino-terminally 

truncated p63-/p73-protein depleted of the transactivation domain. Through alternative 

splicing occurring at the C-terminus, TA and ΔN-isoforms of p63 and p73 can further be 

separated into α, β and γ for p63 and α, β, γ, δ, ε, ζ, η and φ for p73 (De Laurenzi et al., 

1998, De Laurenzi et al., 1999, Yang et al., 1998, Zaika et al., 1999) (Figure 2.6 A, after 

(Jacobs et al., 2004)). Even more isoforms are described for p73, since also N-terminal 

splicing of exons 2 and/or 3 can occur (TA domain). Structurally the γ isoforms are closest to 

p53. Additionally to the TA, DBD and OD domain, the TAp63/p73α isoforms contain a sterile 

α motif (SAM), which is a protein interaction domain, and a transcription inhibition domain 

(TID) (Chi et al., 1999, Thanos et al., 1999) (Figure 2.6 B and C, after (Jacobs et al., 2004)). 

Through an intra-molecular interaction between the N-terminal TA domain and the TID, the 

transcriptional activity of TAp63/p73 can be inhibited by the protein itself (Serber et al., 2002, 

Straub et al., 2010). 

The DNA binding domain of each family member is closely related across species 

(homologs) (Belyi et al., 2010, Jin et al., 2000). Also between p53, p63 and p73 (paralogs) 

high homology is observed, especially for the DBD (~60% aa identity). However, the 

strongest homology can be seen between the domains of p63 and p73 with 86% homology 

for the DBD, 27% for the TA, 54% for the OD and 53% for the SAM domain (Levine et al., 

2011) (Figure 2.6 D, after (Jacobs et al., 2004)). This indicates the strong relation of these 

two family members during evolution and might also explain their functional similarity in 

contrast to p53 action (refer to 2.2.3).  

2.2.2 The transcription factors p53, p63 and p73 

The p53 proteins belong to a family of transcription factors. All members are able to form 

tetramers and bind to p53REs (canonical sequence: RRRCWWGYYY) in promoters and 

introns of target genes via their DBD. They activate a common set of target genes, involved 

in cell cycle (p21WAF1, GADD45, 14-3-3σ) and apoptosis (Igfbp3, Bax, Noxa, Puma), as 

shown by reporter assays and overexpression experiments (Di Como et al., 1999, Jost et al., 

1997, Keyes et al., 2005, Melino et al., 2004, Zhu et al., 1998a). But they also induce 
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expression of specific genes related to development, tumorigenesis and DNA damage (for 

functional differences of p53 family members refer to 2.2.3). p63 for example can bind to 

p63REs activating p63 specific genes involved in skin, limb and craniofacial development 

(Osada et al., 2005). While TA-isoforms are the main transcriptional activators, ΔN-isoforms 

are functioning in a dominant negative manner towards their own family members. By 

oligomerization p53, TAp63 and TAp73 are able to bind to the DNA and activate gene 

expression. If heterocomplexes with ΔN-isoforms of p63 or p73 are formed or DNA binding 

sites are blocked by ΔNp63/p73, the transactivation ability of p53 and the TA-isoforms can be 

inhibited (Grob et al., 2001, Pozniak et al., 2000, Stiewe et al., 2002b, Yang et al., 1998). 

ΔNp63 and ΔNp73 were shown not only to inhibit transcription, but also to activate specific 

target genes, not induced by TA isoforms (Liu et al., 2004, Wu et al., 2003). In sum, the main 

function of the TA isoforms is to promote cell cycle arrest, cellular senescence and apoptosis, 

while ΔN isoforms induce proliferation (Murray-Zmijewski et al., 2006). Since homo- and 

hetero-tetramers between the different family members can be formed, the overall activity of 

each of the three p53 family members has to be calculated as ratio between their isoforms, 

also taking expression of TA and ΔN isoforms into account (Levine et al., 2011).  

2.2.3 Functions of the p53 family members 

The p53 gene is the most frequently mutated gene in human cancer and around 80% of all 

human tumors are supposed to show a loss of p53 function (Hollstein et al., 1996, Hollstein et 

al., 1991). Transgenic mice depleted of p53 show no developmental abnormalities, but 

strongly grow spontaneous tumors (Donehower et al., 1992). The transcription factor p53 

harbours an important role as tumor suppressor and is named the “guardian of the genome” 

(Chen et al., 1990, Finlay et al., 1989). Upon oncogenic signals, stress and DNA-damage it 

induces apoptosis, cell cycle arrest or senescence to ensure genetic stability of somatic cells 

by reducing cell growth and inducing DNA repair or cell death (Lane, 1992).  

In contrast to p53, the p63 and p73 genes are rarely mutated in human cancer (Han et al., 

1999, Kovalev et al., 1998, Sunahara et al., 1998). Nevertheless, it was shown recently that 

TAp73 can act as a classical tumor suppressor, since isoform specific TAp73KO mice are 

predisposed to spontaneous and carcinogen-induced tumors (Tomasini et al., 2008). 

Depletion of p73 from developing lymphomas favors tumor dissemination and extranodal 

growth in mice and humans (Nemajerova et al., 2010). p63 was also reported to be involved 

in tumorigenesis. Loss of p63 in squamous cell carcinoma (SCC) cell lines lead to an 

increase in their metastatic potential (Barbieri et al., 2006). Like p73, p63 cooperates with p53 

in tumor suppression, as double heterozygous p53-p63 and p53-p73 mice show a higher 
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tumor burden and increased metastasis as mice heterozygous only for p53 (Flores et al., 

2005). A study on TAp63-specific KO mice furthermore shows that TAp63 enables Ras-

induced senescence in a p53 independent manner, thereby antagonizing tumorigenesis (Guo 

et al., 2009). 

However, when p63KO and p73KO mice were analyzed, severe developmental defects could 

be observed. p63 plays an important role during epithelial development, while p73 is 

indispensable for the development of the nervous system (Mills et al., 1999, Yang et al., 

1999, Yang et al., 2000).  

p63 total KO mice (depletion of the DBD) show limb truncations, craniofacial abnormalities, 

absence of skin as well as adnexa like hair, teeth and glands. Loss of p63 leads to postnatal 

lethality, since newborn mice die of desiccation due to the absence of skin (Mills et al., 1999; 

(Mills et al., 1999; Yang et al., 1999). ΔNp63 was shown to be strongly expressed in stem 

cells of epithelia and is important for maintaining self-renewal of the basal layer. Epithelial 

stem cells of p63KO mice undergo premature proliferation stop in epidermis and thymus and 

remaining surface cells display characteristics of differentiating keratinocytes (Senoo et al., 

2007). p63 transactivates target genes involved in adhesion (i.e. PERP, Laminin) and 

differentiation (i.e. CEBP/B, Notch1) of keratinocytes (Pozzi et al., 2009). Since ΔNp63 plays 

a fundamental role in epithelial development, it is not surprising that overexpression of ΔNp63 

is frequently seen in SSCs of the lung, head and neck. In contrast to TAp63, ΔNp63 can 

function as an oncogene by interacting with Ras and promoting tumor-initiating stem-like 

proliferation in keratinocytes (Hibi et al., 2000, Keyes et al., 2011, Yamaguchi et al., 2000). 

TAp63 is stated to contribute to epidermal differentiation of the later stages of keratinocyte 

maturation and therefore to the onset of the epithelial stratification program (Candi et al., 

2006). Furthermore, TAp63KO mice age prematurely and display skin ulcerations, 

senescence of hair follicle-associated epidermal cells and decreased hair morphogenesis. 

This indicates an additional role for TAp63 in maintaining stem cell function of the skin and 

regulating cellular senescence (Su et al., 2009). In humans missense mutations in the p63 

DBD sequence lead to the rare autosomal dominant developmental disorder EEC 

(ectrodactyly, ectodermal dysplasia, facial clefts) (Celli et al., 1999).  

p73 total KO mice show severe developmental defects of the central nervous system (CNS), 

including hippocampal dysgenesis, decrease in cortical layers (cortical hypoplasia) and ex 

vacuo hydrocephalus. Impaired function of the vomeronasal organ and therefore problems in 

pheromone detection were stated to lead to abnormal social and reproductive behavior of 

p73KO mice. 75% of p73KO mice were dying within the first 4 weeks and KO mice were 

suffering from immunological problems like chronic infections and inflammation (Yang et al., 
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2000). The high mortality rate could be overcome by nursing the smaller p73KO pups by 

foster mothers. The ΔNp73 isoform is predominantly expressed in the developing brain, 

acting as prosurvival factor. NGF-induction (neural growth factor) during nervous system 

development keeps ΔNp73 levels high and enables it to block TAp73/TAp63/p53-mediated 

apoptosis in developing neurons. Loss of ΔNp73 in p73KO mice leads to apoptosis of 

sympathetic neurons in the superior cervical ganglion and the neurons of the developing 

brain (Pozniak et al., 2000). ΔNp73 is also necessary for long term maintenance of adult 

neurons, since the number of cortical neurons decreases dramatically in p73KO mice 14 

days postnatal (Pozniak et al., 2002). Recently, it was shown that p73 plays an important role 

in long term maintenance of neural stem cells in embryonic development and adult mice. 

p73KO mice display proliferative defects for stem and progenitor cells in the SVZ 

(subventricular zone) of the brain and neurosphere assays show reduced self-renewal 

potential of p73 depleted stem cells (Agostini et al., 2010, Fujitani et al., 2010, Talos et al., 

2010). Like ΔNp63, ΔNp73 has a proliferative, antiapoptotic function and might also act as an 

oncogene. It was found to be overexpressed in several tumors, including neuroblastoma and 

ovarial cancer (Casciano et al., 2002, Moll et al., 2004, Zaika et al., 2002). 

2.2.4 Mouse models of p73 

A lot of information on p73 and its role during development and tumorigenesis was gained by 

working with mouse models. At present 4 different KO mouse models are known and under 

investigation. As already described in section 2.2.3, research on the p73KO mouse could 

show for the first time that p73 is connected to neural development (Yang et al., 2000). The 

total p73KO mouse is depleted of all p73 isoforms, TA as well as ΔN. This is achieved by 

replacing exons 5 and 6, which are part of the DBD, by a Neo cassette (also refer to Figure 

2.6 A). By depleting the DBD no functional protein can be formed. To shed light on the 

specific role of transactivating isoforms and inhibiting ΔN isoforms, isoform-specific KO mice 

have been generated.  

In TAp73 KO mice exons 2 and 3, encoding the TA domain, are depleted from the gene 

locus. Using the second internal promoter ΔNp73 isoforms can still be expressed (also refer 

to Figure 2.6 A). Compared to total p73KO mice, TAp73KO mice show a mild neural 

phenotype. They only display abnormal hippocampal histology with truncation of the lower 

blade of the dentate gyrus. In addition they spontaneously develop tumors, mainly lung 

adenocarcinoma, and are sensitive to carcinogens. This is accompanied by genomic 

instability associated with enhanced aneuploidy (Tomasini et al., 2008). Also, TAp73KO mice 

are infertile and show reproductive defects in the female germ line (also refer to 2.3.3).   
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Two mouse models of ΔNp73KO mice are currently known. Both use as strategy the 

depletion of the alternative 3´exon of the ΔNp73 transcript. Tissir et al. investigated the effect 

of ΔNp73 loss by knocking in a Cre-recombinase-EGFP cassette instead of exon 3´, using its 

start codon in frame. Via immunofluorescence staining they could monitor cellular localization 

of ΔNp73 in the brain of heterozygous mice to the thalamic eminence, vomeronasal neurons, 

Cajal-Retzius cells (CRc) and the choroid plexus, as well as cell death of cortical neurons 

occurring in ΔNp73KO mice. In contrast to total p73KO mice, ΔNp73KO mice display no overt 

neural abnormalities. They show an atrophic choroid plexus and increased apoptosis of 

mature neurons in selected regions, like the preoptic area, the vomeronasal neurons, GnRH 

positive cells and CRc (Tissir et al., 2009). The second ΔNp73KO mouse model shows 

similar signs of mild neurodegeneration and apoptosis, but the authors additionally describe a 

role for ΔNp73 in inhibiting the DNA damage response pathway by interrupting ATM and p53 

phosphorylation and subsequent cell cycle arrest and apoptosis. Studies were performed in 

mouse embryo fibroblasts (MEFs), murine thymocytes and human osteosarcoma cells 

(U2OS) (Wilhelm et al., 2010).  

The description and analysis of isoform-specific p73KO mice has only begun and needs to be 

investigated further. Mouse models provide a helpful tool to gain information about the protein 

expression of your GOI (gene of interest) and its function in certain tissues during 

development and adulthood.  

2.3 The p53 family and reproduction 

The common p63/p73-like ancestor was first detected in evolution of the modern-day sea 

anemones (Nematostella vectensis). There, the p53 homologue nvp63 is described to act as 

protector of the germ line gametes against DNA damage, to ensure genetic stability and 

production of normal embryos. Upon UV radiation nvp63 can drive damage-induced cell 

death of early gametes (Pankow et al., 2007). This function is over one billion years old 

persisting during evolution in the insects (i.e. Drosophila melanogaster), worms (i.e. 

Caenorhabditis elegans), clams, vertebrates (i.e. Danio rerio) and humans (Belyi et al., 

2010). However, with development of vertebrates and mammals the members of the p53-

family became diverse in number and function. The next section will summarize today´s 

knowledge about all three family members in reproduction, concentrating on the murine 

system.  
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2.3.1 p53 and the germ line 

The role of p53 during maternal reproduction was described recently. First hints towards an 

influence of p53 on the female germ line were obtained when female p53KO mice were 

shown to give birth to small litter sizes, while male p53KO mice were breading normally with 

wildtype (WT) females. Ovulation and fertilization were not changed in p53KO females, but 

the implantation of fertilized eggs into the uterus was affected (Hu et al., 2007). p53 was 

shown to regulate the transcription of leukaemia inhibitory factor (LIF). LIF is secreted by the 

endometrial glands of the uterus and is necessary for decidualization of the uterine tissue and 

the implantation of the embryo into the uterus 4 days after fertilization. LIF and p53 

expression levels correlate in time and location in the glandular cells and the p53KO 

implantation defect could be rescued by LIF injection into pregnant mice (Hu et al., 2008, Hu 

et al., 2007). In humans single nucleotide polymorphisms (SNPs) in p53 can have profound 

effects on the implantation ability of zygotes and female fertility. Women with difficulties in 

implantation of fertilized eggs more often hold the proline residue at codon 72 of p53 than the 

arginine (Kang et al., 2009, Kay et al., 2006). In cell culture the proline SNP of p53 was 

shown to produce decreased LIF levels compared to the arginine SNP, giving an explanation 

for the implantation problems in women harbouring this polymorphism (Hu et al., 2007).    

In addition to the role of p53 for correct implantation, there are hints that p53 might also help 

to remove DNA-damaged oocytes upon irradiation. In the ovary p53 is expressed mainly on 

atretic follicles and it regulates expression of the apoptosis-inhibitor bcl-2 and apoptosis 

activator bax (Herr et al., 2004, Hussein et al., 2006, Miyashita et al., 1994). In response to γ-

irradiation and chemotherapy, p53 and p21 expression increases in the nuclei of follicular 

granulosa cells and mediates apoptosis and follicular degeneration (Gartel et al., 2002, Lee 

et al., 2008). Moreover, p53 was reported to influence developmental apoptosis during 

prenatal oogenesis, which is important for oocyte selection during prophase I of meiosis. In 

p53KO mice a higher proportion of abnormal oocytes and a decrease in apoptotic markers 

were found (Ghafari et al., 2009).  

Prenatal, physiologically occurring apoptosis of sperm cells is partly regulated by p53, since 

p53KO mice show decreased apoptotic cells in developing testes (Matsui et al., 2000). Upon 

γ-irradiation and induction of DSBs in adult rat and mice, p53 levels increase mainly in pre-

leptotene and pachytene spermatocytes, the maturation stage of sperm cells where DSBs 

occur during recombination events (Beumer et al., 1998, Sjoblom et al., 1996). Damaged 

sperm cells are removed dependent on p53, since p53KO mice display abnormal, giant sized 

sperm cells after irradiation (Beumer et al., 1998). Additionally, human p53 was shown to 

bind to Rad51, influencing its recombination function, and p53KO mice displayed impaired 



     INTRODUCTION 25 

DNA repair (Schwartz et al., 1999, Sturzbecher et al., 1996). Some genetic strains of p53KO 

mice show the giant-cell degenerative syndrome, because primary spermatocytes are unable 

to complete the meiotic divisions (Rotter et al., 1993). p53 might therefore control meiotic 

recombination and ensure genetic stability in males and in females.   

2.3.2 p63 and the germ line 

TAp63 was stated to be the protector of the female germ line. It controls the quality and 

survival of the oocyte pool during meiotic arrest in prophase I (Suh et al., 2006). Oocytes 

exist as a limited population and are arrested as primordial follicles at this tetraploid stage of 

meiosis I. It has to be ensured that only genetically stable primordial follicles will enter the 

next meiotic steps and maturate to tertiary follicles. TAp63 is expressed in the nuclei of 

female germ cells during meiotic arrest. Its protein expression is increasing strongly after birth 

(Livera et al., 2008, Suh et al., 2006). Upon ionizing radiation TAp63 gets phosphorylated 

and is able to induce apoptosis of DNA-damaged oocytes. TAp63-specific KO mice fail to 

remove genetic instable oocytes after irradiation, while WT mice reduce the primordial follicle 

pool by 90% (Suh et al., 2006). Induction of DNA-damage and cell death in oocytes by 

irradiation or chemotherapeutic treatment with cisplatin seems to be independent of p53, but 

dependent on activation of TAp63, which is phosphorylated and stabilized by the kinase c-Abl 

(Suh et al., 2006, Gonfloni et al., 2009). Deutsch et al. furthermore showed that TAp63α is 

kept in an inactive dimeric state in oocytes and is able to switch to its activated tetramer-form 

upon DNA damage induced phosphorylation (Deutsch et al., 2011). TAp63 is therefore called 

“the guardian of the female germ line”. 

Kurita et al. showed that the TA isoform of p63 is expressed in ovary as well as in postnatal 

testis, where nuclei of spermatogonia up to spermatids are positive for p63 staining (Kurita et 

al., 2005). Additionally to p63 expression in postnatal meiotic and spermiogenic cells, p63 

could be detected in the early developing gonocytes from embryonic day E13.5 to E18.5 

(Nakamuta et al., 2004, Nakamuta et al., 2003). During embryonic development murine 

gonocytes pass through three phases: fetal proliferation and apoptosis (13.5 dpc - day post-

coitum), quiescent period (14.5-18.5 dpc) and neonatal proliferation and apoptosis (1dpp - 

day post-partum). p63γ was shown to be strongly expressed in the quiescent period and 

p63KO mice display increased numbers of gonocytes in this phase as well as in testis organ 

cultures mimicking neonatal in vivo development. These findings accompanied by a decrease 

in apoptotic cells suggest a function for p63 in regulating prenatal germ cell apoptosis (Petre-

Lazar et al., 2007). In addition to developmental apoptosis p63 as well as p53 are involved in 

germ cell apoptosis of DNA-damage-induced fetal testes, since p63KO and p53KO embryos 
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display an increased survival of γ-irradiated germ cells compared to WT (Guerquin et al., 

2009). Recently, it was shown that a new isoform named GTAp63 is able to protect the adult 

male germ line against genetic instability upon DNA damage. This isoform is highly and 

specifically expressed in testis and is driven by an upstream located long terminal repeat 

(LTR) of the human endogenous retrovirus 9 (ERV9), which is unique to humans and great 

apes (Hominidae). In response to genotoxic stress, i.e. cisplatin treatment, GTAp63 was able 

to induce apoptosis and activate expression of apoptotic target genes like puma and noxa in 

human cancer cell lines (Beyer et al., 2011). TAp63 isoforms therefore seem to protect the 

female as well as the male germ line upon irradiation and induction of DNA damage.  

2.3.3 p73 and the germ line 

Like TAp63, TAp73 was also shown to play a role in maternal reproduction. While TAp63 

ensures genomic stability upon exogenous DNA damage, TAp73 ensures normal mitosis in 

the developing blastocyst. TAp73KO mice are infertile and display poor oocyte quality 

indicative of an increase in spindle abnormalities, like multipolar spindles, spindle relaxation 

and spindle scattering accompanied by chromosome misalignment (Tomasini et al., 2008). 

Performing in vitro fertilization (IVF) and monitoring preimplantation development it became 

visible that only 30% of the TAp73KO zygotes were able to become blastocysts, compared to 

75% in WT. KO mice gave rise to multinucleated blastomeres and blastocysts with abnormal 

cell number (Tomasini et al., 2008). The molecular explanation for the failure in 

preimplantation embryonic development is the observation of TAp73 interaction with 

components (Bub1, Bub3 and BubR1) of the spindle assembly checkpoint (SAC) (Tomasini 

et al., 2009). This checkpoint ensures correct attachment of all chromosomes to the spindle 

before separation in anaphase. Changes in TAp73 expression levels are known to lead to 

aneuploidy (Tomasini et al., 2008, Vernole et al., 2009). In women of advanced reproductive 

age (˃ 38 years), who display increased egg aneuploidy, TAp73 expression was shown to be 

downregulated in oocytes (Guglielmino et al., 2011). In the female germ line TAp73 therefore 

seems to ensure genomic stability and euploidy by enabling correct mitosis. TAp73KO 

oocytes also failed to ovulate into the fallopian tubes upon induction of superovulation. 

Ovulated oocytes were retained in the ovary and lay trapped under the bursa. TAp73 does 

not only affect oocyte and blastocyst quality, but also regulates oocyte localization and their 

ovulation rate through changes in oocyte factor expression (Tomasini et al., 2008).  

ΔNp73KO mice were described to be fertile by Wilhelm et al., 2010. However, Tissir et al., 

2009 observed impaired fertility for both sexes, “particularly evident for females that 
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generated only two or three litters”. So far, no further data on female or male histology of the 

germ line of ΔNp73KO mice are available.  

In the male germ line p73 was shown to be expressed in spermatogonia, spermatocytes and 

residual bodies, colocalizing with c-Abl in the cytoplasm of the cells (Hamer et al., 2001). p73-

induced activation of apoptotic genes is dependent on c-Abl. Upon ionizing irradiation p73 

interacts with c-Abl and in turn gets phosphorylated by the kinase, as shown in human breast 

cancer cell line (MCF-7) and murine testis (Agami et al., 1999, Hamer et al., 2001). Codelia et 

al. also observed p73 phosphorylation by c-Abl and induction of apoptosis after etoposide 

treatment of GC2 spermatocytes and pre-pubertal rats (Codelia et al., 2010). It was stated 

that the p73 mediated apoptosis could serve as back up of p53 induced apoptosis in p53KO 

mice exposed to DNA damage (Hamer et al., 2001).    

2.4 Scope of the thesis 

p73 as well as TAp73KO mice were described to be infertile for both sexes. Originally it was 

stated that p73 mice fail to mate normally due to behavioral defects and problems in the 

pheromone sensory system (Yang et al., 2000). However, TAp73 specific KO mice do not 

show abnormal mating behavior and nevertheless display infertility. Female mice were stated 

to show severe spindle defects in the developing oocytes and produce aneuploid embryos. 

Male TAp73KO mice were also described to be infertile, but so far no further data are 

available to explain this phenotype (Tomasini et al., 2008). Investigations on testis 

morphology of total p73KO mice only included histologic staining of young mice, still 

undergoing the first wave of spermatogenesis. No morphological changes could be observed 

for the developing KO males (Yang et al., 2000: data not shown). Adult mice were not 

examined so far. In contrast to p73KO mice, p53KO as well as p63KO testes have been 

analyzed in more detail. Both family members are involved in the regulation of developmental 

and irradiation-mediated apoptosis in the prenatal testis (Guerquin et al., 2009, Matsui et al., 

2000, Petre-Lazar et al., 2007). Furthermore, p53 is implicated in male meiotic recombination 

and p63 in the protection of genetic stability of sperm cells (Beyer et al., 2011, Sjoblom et al., 

1996). Additionally, the role of p53 family members in the female germ line was analyzed 

extensively. Several studies show that all three family members help maintaining the quality 

and quantity of the oocyte pool via different mechanisms. TA isoforms regulate implantation 

(p53), genomic stability (p63 and p73) and ovulation (p73) of oocytes (also refer to 2.3).  

p73 was described to be expressed in spermatogonia and spermatocytes (Hamer et al., 

2001), but its physiological function within the male germ line of KO mice deficient for p73 or 
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its specific isoforms has not been examined so far. While p73 is heavily involved in 

developmental processes and ensures genetic stability in the female germ line, it still has to 

be answered, if p73 could take part in regulating the male germ line during development. 

Therefore, it has to be evaluated, if p73 is necessary for spermatogenesis and the production 

of viable sperm cells.  

This study shall address the question whether p73 loss leads to infertility due to a secondary 

effect or rather due to direct influence of p73 on sperm cell development. For this approach, 

histologic analysis of testis sections from total p73KO mice was performed. Additionally, 

isoform-specific TA and ΔNp73KO mice were analyzed to gain information, which isoform 

might be necessary for testicular development. Serum levels of hormones, involved in 

testicular development and produced in the brain, were measured to exclude a secondary 

effect, originating from the influence of p73 on brain architecture. To determine which cellular 

processes could be regulated by p73, proliferation, meiosis and apoptosis were studied by 

applying specific immunological stainings on testis sections. Since defects in 

spermatogenesis can occur at different developmental steps and sperm maturation is 

dependent on supporting Sertoli cells, different sperm cell stages as well as Sertoli cells were 

analyzed in number and morphology. Furthermore, expression analysis on whole testes as 

well as on primary cell culture was performed to determine testicular target genes of p73 and 

provide a molecular explanation for the infertility of p73KO and TAp73KO mice. For the first 

time, the influence of the p53 family member p73 on the male germ line development was 

examined in detail. 
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3 MATERIALS 

3.1 Technical devices and equipment 

Table 3.1: Technical Devices and equipment 

Device Company 

Biovortexer MHX (E)  Xenox 

Brushes for histology  Neolab 

Calliper (digital)  Rettberg 

Centrifuge Megafuge 1.0R   Heraeus, Thermo Scientific 

Centrifuge MIKRO 22R mikrocentrifuge   Hettich GmbH & Co. KG  

Centrifuge Mini Centrifuge MCF-2360  LMS, Tokyo, Japan 

Centrifuge Typ GMC-060   LMS Laboratory & Medical Supplies 

Centrifuge Typ 5810R  Eppendorf 

Chromo4TM  Realtime PCR machine  Bio-Rad Laboratories  

Cooling centrifuge Typ 5415R   Eppendorf 

Cooling plate  Heraeus, Thermo Scientific 

DNA gel chamber, slides and combs   Biotech Service Blu, Schauenburg  

Embedding chambers  Techno-Med 

Forceps and scissors for tissue preparation  Omnilab 

Freezer -20° C  Liebherr, Bulle, Switzerland 

Freezer -80° C Hera freeze  Heraeus, Thermo Scientific 

Gel iX Imager, UV-transilluminator  Intas Science Imaging Instr. GmbH 

Glass Hellendahl cuvettes for histology  Omnilab 

Glass slide racks with handle for histology  Omnilab 

Glass staining dish with cover for histology  Omnilab 
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Heating Block  Grant Instruments, Hillsborough, US 

Heating plate for slides  Heraeus, Thermo Scientific 

Humidified chamber histology  Weckert Labortechnik 

Ice-machine B100  Ziegra, Isernhagen, Germany 

Incubator for cell culture, Hera Cell 150  Heraeus, Thermo Scientific, Waltham, 

MA, US    

Incubator for slides  Memmert GmbH + Co. KG 

Laminar flow cabinet Hera Safe  Heraeus, Thermo Scientific 

Liquid nitrogen tank LS4800  Labsystems Taylor Wharton 

Magnet stirrer MR3001  Heidolph Instruments GmbH & Co.KG  

Microm EC350 embedding station  Heraeus, Thermo Scientific 

Microscope Axio Scope.A1 with               

AxioCam MRc and AxioVision 4.8 Software 

 Carl Zeiss  

Microscope Axiovert 40C  Carl Zeiss 

Microscope Axiovert 40 CFL with AxioCam 
ICm1 and AxioVision 4.8 Software 

 Carl Zeiss 

Microscope, confocal Zeiss Confocal LSM 510 
meta 

 Carl Zeiss 

Microscope, Leica KL 1500 LCD with DFC 480 
camera 

 Leica 

Microscope, transmission electron microscope, 
Philips CM 120 BioTwin  

 Philips Inc.Eindhoven, Netherlands 

Microslide Box, Cork  Rettberg 

Microtome Leica RM2235  Leica 

Microwave  MW 17705    Cinex, Lippstadt, Germany  

NanoDrop® ND-100 spectrophotometer  Peqlab, Erlangen, Germany 

Neubauer chamber  improved  Brand GmbH & Co. KG 

Paraffin oven   Heraeus, Thermo Scientific 

PCR Cycler Advanced Primus25  Peqlab Biotechnologie GmbH 

PCR machine Thermocycler T personal   Biometra, Göttingen, Germany 

Personal Computer  Dell, Round Rock, TX, US 
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pH-meter WTW-720, InoLab® Serie  WTW GmbH, Weilheim, Germany 

Pipet-Aid® portable XP  Drummond, USA  

Pipet Multipette  Eppendorf 

Pipettes Eppendorf® Research Series 2100   

(0.1-2.5μl; 0.5-10μl; 10-100μl; 100-1000μl)  

 Eppendorf  

Power supply unit Powerpack P25T  Biometra 

Refrigerator 4°C  Liebherr 

Scales Acculab ALC-6100.1  Sartorius, Göttingen, Germany 

Scales Expert LE823S   Sartorius, Göttingen, Germany 

Scales LE623S  Sartorius, Göttingen, Germany 

Shaker   Neolab  

Shaker Promax 2020  Heidolph 

Shandon Coverplate System  Heraeus, Thermo Scientific 

Thermomixer comfort   Eppendorf 

Timer  Oregon Scientific, Portland, OR, US 

Ultra pure water system Aquintus  membraPure 

Vacupack 2 plus sealing machine   Krups GmbH, Lyon, France  

Vacusafe Comfort vacuum pump  IBS Integra Biosciences  

Vortex Genie 2  Scientific Industries, Bohemia, NY, US 

Vortex mixer  VWR 

Water bath HIR-3  Kunz Instruments 

Water bath TW 20  Julabo Labortechnik, Seelbach, 
Germany 

 

3.2 Consumables 

Table 3.2: Consumables 

Product Company 

6-well/12-well cell culture plates   Greiner 
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8-well microscopy chamber slides  Nunc, Thermo Scientific 

96-well plates for qPCR  Sarstedt 

Cell culture petri dishes   Greiner 

Cell scraper (16 mm/25 mm)  Sarstedt 

Cover slips (24x40, 24x60 mm)  Menzel, Thermo Scientific 

Filter for histology (Ø185)  Machery-Nagel 

Filter tips (0,5-10µl/2-200µl/1000µl)  Sarstedt 

Microtome blades Leica 819  Leica 

Needles, different sizes  BD Microlance 

Parafilm  Brand 

PCR reaction tubes 0.2 ml   Sarstedt  

PCR tubes, 8er Multiply Strips, 0.2ml  Sarstedt 

Pipets, serological (5ml, 10ml, 25ml)  Sarstedt 

Pipet tips (0,5-10µl/2-200µl/1000µl)  Sarstedt 

PP tubes (15 ml/50 ml)  Greiner 

Reaction tubes (0.5ml/1.5ml/2ml)  Eppendorf 

Rotilabo® tissue cassettes   Roth 

Sealing tape for qPCR plates  Sarstedt 

Shandon coverplate system  Heraeus, Thermo Scientific 

Slides, 76x26 mm, cut  Knittel Gläser 

Sterile filter (0.45µm, 0.2µm)  Sartorius, Göttingen, Germany 

Superfrost Plus coated slides  Menzel, Thermo Scientific 

Surgical blade, carbon steel, sterile  Swann Morton 

Syringes (1ml, 10ml, 20ml)  Henke Sass Wolf 

Syringe canula (0.55x25mm, 0.3x12mm)  B.Braun 
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3.3 Chemicals 

Table 3.3: Chemicals 

Product Company 

Acetic acid  Carl Roth GmbH + Co. KG 

Agar 100  ordered by AG Riedel, MPI-bpc 

Agarose  Carl Roth GmbH + Co. KG 

Ammonium sulfate ((NH4)2SO4)  Carl Roth GmbH + Co. KG 

Avertin (2-2-2 tribromoethanol)  Sigma-Aldrich GmbH 

Bromphenol blue  Sigma-Aldrich GmbH 

Calcium chloride (CaCl2)  Carl Roth GmbH + Co. KG 

Citric acid monohydrate  Carl Roth GmbH + Co. KG 

Chloroform   Carl Roth GmbH + Co. KG 

4',6-diamidino-2-phenylindole (DAPI)  Sigma-Aldrich GmbH 

3,3`-Diaminobenzidin-tetrahydrochloride (DAB)  Carl Roth GmbH + Co. KG 

Di-sodium hydrogenphosphate di-hydrate  

(Na2HPO4  x 2 H2O) 

 Carl Roth GmbH + Co. KG 

DNA-standard 1kb ladder mix  Fermentas, Thermo Scientific 

Eiweiß-Glycerin for histology  Carl Roth GmbH + Co. KG 

Eosin G  Carl Roth GmbH + Co. KG 

Ethanol >99,8%  Carl Roth GmbH + Co. KG 

Ethanol >99,9% p.a. (EtOH)  Merck 

Ethidium bromide (EthBr)  Sigma-Aldrich GmbH 

Ethylenediamine-tetraacetate (EDTA)  Carl Roth GmbH + Co. KG 

EZ Link Sulfo-NHS-LC-Biotin  Thermo Scientific, Rockland, IL 

Fluorescent Mounting Medium  DakoCytomation 
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Formaldehyde, 37% solution  Carl Roth GmbH + Co. KG 

Glutaraldehyde, 25% EM Grade Aqueous  Electron microscopy sciences 

Glycerol   Carl Roth GmbH + Co. KG 

Glycogen Glyco blue  Ambion, Life Technologies 

H2O, RNase-free  Ambion, Life Technologies 

Histofix, Roti-Histokitt II  Carl Roth GmbH + Co. KG 

Hydrochloride acid (HCl)  Carl Roth GmbH + Co. KG 

Hydrogen peroxide solution (H2O2), 30%  Carl Roth GmbH + Co. KG 

Immersion oil  Carl Zeiss 

Isoamylalcohol   Carl Roth GmbH + Co. KG 

Isopropanol  Th. Geyer, Renningen, Germany 

Lead citrate  ordered by AG Riedel, MPI-bpc 

Magnesium chloride hexahydrate (MgCl2 x 6H2O)  Carl Roth GmbH + Co. KG 

Mayer`s haematoxylin solution  Merck 

Nailpolish, optically clear  Essence 

Osmium tetroxide  ordered by AG Riedel, MPI-bpc 

Paraffin Rotiplast  Carl Roth GmbH + Co. KG 

Paraformaldehyde  Carl Roth GmbH + Co. KG 

pH solution 4.01  Carl Roth GmbH + Co. KG 

pH solution 7.01  Carl Roth GmbH + Co. KG 

pH solution 10.01  Carl Roth GmbH + Co. KG 

Potassium chloride (KCl)  Carl Roth GmbH + Co. KG 

Potassium di-hydrogenphosphate (KH2PO4)  Carl Roth GmbH + Co. KG 

RNase inhibitor  Fermentas, Thermo Scientific 

Sodium cacodylate buffer, 0.2M  Electron microscopy sciences 
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Sodium chloride (NaCl)  Carl Roth GmbH + Co. KG 

Sodium hydrogenphosphate (NaHPO4)  Carl Roth GmbH + Co. KG 

Sodium hydroxide (NaOH)  Sigma-Aldrich GmbH 

Sucrose  Sigma-Aldrich GmbH 

SYBR Green   Invitrogen, Life Technologies 

Tert-amyl alcohol (2-methyl-2-butanol)  Fisher Scientific 

Trehalose, α, α -Trehalose, dihydrate  USB Corporation 

Tris base (tris(hydroxymethyl)aminomethane)  Carl Roth GmbH + Co. KG 

Triton X-100  Applichem 

Trizol  Invitrogen, Life Technologies 

Tween-20  Applichem 

Uranyl acetate  ordered by AG Riedel, MPI-bpc 

Xylol, >98%  Carl Roth GmbH + Co. KG  

3.4 Buffers and solutions 

 

Anesthesia working solution: 

2% Avertin (stock solution dissolved in tert-amyl alcohol)  

98% PBS 

sterile filtered 

Antigen retrieval solution, IHC: 

10mM citric acid pH 6.0 (equilibrate with NaOH) 

dissolved in H2O  

Antigen retrieval solution, TUNEL: 

100mM citric acid pH 6.0 (equilibrate with NaOH) 

dissolved in H2O  
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Biotin stock solution: 

9mM EZ Link Sulfo-NHS-LC-Biotin  

1mM CaCl2  

dissolved in sterile PBS, pH 7 

Blocking solution, IF and IHC:  

5-10% FCS dissolved in PBS 

Developing solution, IHC: 

0.01% H2O2 

2mM DAB  

dissolved in PBS 

Differentiation solution, HE: 

1% HCl 

70% Isopropanol 

fill up with H2O 

DNA loading buffer, 6x: 

0.25% Bromphenol blue 

40% Sucrose 

10% Glycerin 

dissolved in H2O 

Eosin staining solution, HE: 

0.1% Eosin G 

dissolved in H2O, with 3-4 drops of acetic acid 

Fixation buffer, 4%, IF and IHC:  

37% Formalin solution, diluted to 4% in PBS 
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Fixation buffer, EM:  

2.5% Glutaraldehyde 

0.1M Cacodylate buffer 

fill up with H2O 

Phosphate buffered saline (PBS), pH 7.5: 

24mM NaCl 

0.27mM KCl 

0.81mM Na2HPO4 x 2H2O 

0.15mM KH2PO4 

dissolved in H2O 

qPCR reaction buffer, 10x: 

750mM Tris, pH 8.8 (equilibrate with HCl) 

200mM (NH4)2SO4 

0.1% Tween 20 

dissolved in H2O, sterile filtered 

qPCR reaction mix, 25x: 

1x  10x qPCR reaction buffer 

1:80.000 SybrGreen, dissolved in DMSO 

3mM MgCl2 

300mM Trehalose, dissolved in 10mM Tris, pH 8.5, sterile filtered 

0.2mM dNTPs 

0.25% Triton X-100 

20 U/ml Taq polymerase 

dissolved in H2O 

Permeabilization buffer, IF: 

0.5% Triton X-100 

dissolved in PBS 
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Peroxidase blocking buffer, IHC: 

3% H2O2 

dissolved in PBS  

TAE buffer: 

40mM Tris 

20mM acetic acid 

2mM EDTA, pH 8 

dissolved in H2O 

3.5 Enzymes and PCR solutions 

Table 3.4: Enzymes and PCR solutions 

Product Order number Company 

25 mM MgCl2  R0971  Fermentas, Thermo Scientific 

dNTP-Mix, 25 μM each dNTP  U1420  Promega/ Bio-Budget, Krefeld 

dNTPs (ATP, TTP, CTP, GTP) 
100mM for qPCR Mix  

 1202.4 - 1205.4  Primetech 

M-MuLV reverse transcriptase  M0253  NEB 

NEBuffer for M-MuLV, 10x  B0253  NEB 

Primer mix for RT-PCR         
(random nonamer and dT23VN) 

 /  Metabion 

RNase inhibitor, recombinant  M0307   NEB 

Taq DNA polymerase for qPCR Mix  1800  Primetech 

Taq DNA polymerase  EP0402  Fermentas, Thermo Scientific 

Taq buffer with KCl, 10x  B38  Fermentas, Thermo Scientific 
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3.6 Kits 

Table 3.5: Kits 

Product Order number Company 

Invisorb Spin Tissue Mini Kit (250)  10321003  Stratec (former Invitek) 

In situ cell death detection kit, POD (TUNEL)  11684817910  Roche 

TUNEL Enzyme from calf thymus                   
(single component, TUNEL kit) 

 11767305001  Roche 

TUNEL Label Mix                                       
(single component, TUNEL kit) 

 11767291910  Roche 

3.7 Cell culture solutions 

3.7.1 Cell culture components  

Table 3.6: Cell culture components 

Product Company 

Ciprofloxacin (Ciprobay)  Bayer 

Collagenase/Hyaluronidase, 10x Stem Cell Technologies 

DMEM, High Glucose  Phenol-Red Free  GIBCO, Invitrogen 

DNase I (1mg/ml) Stem Cell Technologies 

F-12 Nutrient Mixture (Ham), liquid  GIBCO, Invitrogen 

Fetal calf serum (FCS)  GIBCO, Invitrogen 

Geltrex, reduced growth factor basement membrane matrix  GIBCO, Invitrogen 

Hanks' Balanced Salt Solution (HBSS) (1X), liquid  GIBCO, Invitrogen 

L-glutamine  GIBCO, Invitrogen 

Penicillin/Streptomycin  GIBCO, Invitrogen 

Trypsin/EDTA  GIBCO, Invitrogen 
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Trypsin from porcine pancreas  Sigma Aldrich GmbH 

3.7.2 Solutions for Sertoli cell preparation  

 

Collagenase/Hyaluronidase and DNase digestion:  

1x Collagenase/Hyaluronidase and 1µg/ml DNase I diluted in 1xHBSS  

Trypsin digestion:  

50mg/ml stock (sterile filtrated) diluted 1:100 in 1xHBSS 

Hypotonic shock:  

20mM Tris-HCl, pH 7.2 

 

3.7.3 Sertoli cell culture media 

 

10 µg/ml Ciprobay 

50 U/ml Penicillin 

50 µg/ml Streptomycin 

200 µM L-glutamine 

5% FCS 

dissolved in 1:1 DMEM (High Glucose)/ F-12 

 

PBS buffer: 

PBS for cell culture was prepared using PBS tablets (GIBCO, Invitrogen) according to 

manufacturer’s instructions and then autoclaved. 
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3.8 Antibodies 

Table 3.7: Primary antibodies 

Antibody Dilution Species Company 

 anti Apg1 (N-96) 1:200 polyclonal rabbit  Santa Cruz, sc-6242 

 anti DDX4/VASA 1:1000 polyclonal rabbit  Abcam, ab13840 

 anti GCNA1 (10D9611) 1:400 polyclonal rat  provided by Prof. Dr. Adham  

(University Göttingen) 

 anti Espin (clone 31) 1:400 monoclonal mouse  BD Biosciences,611656 

 anti Ki67 (clone TEC-3) 1:25 monoclonal rat  Dako, M7249 

 anti phospho H3 (Ser10),           

Alexa Fluor 488 conjugate 

1:100 polyclonal rabbit  Cell Signaling, #9708 

 anti Timp1  1:10 polyclonal goat  R&D systems, AF980 

 anti Vimentin 1:100 polyclonal rabbit  Santa Cruz, sc-7557-R 

 anti WT1 1:300 polyclonal rabbit  Abcam, ab15249 

Table 3.8:  Secondary antibodies and streptavidin conjugates 

Antibody Dilution Company 

AlexaFluor488 goat anti-mouse IgG 1:500  Molecular Probes 

AlexaFluor488 goat anti-rabbit IgG 1:500  Molecular Probes 

AlexaFluor594 donkey anti-goat IgG 1:500  Molecular Probes 

donkey anti-rabbit IgG (Fab-fragment), biotinylated 1:500  GE Healthcare 

goat anti-rat IgG (Fab-fragment), biotinylated 1:500  GE Healthcare 

ExtrAvidin®−Peroxidase 1:1000  Sigma-Aldrich GmbH 

Streptavidin, Texas Red Conjugate 1:100  Calbiochem, Merck 
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3.9 Oligonucleotides  

 

All primers were ordered from Metabion, Martinsried. Lyophilized oligonucleotides were 

dissolved in sterile water to obtain stock solutions with a concentration of 100 µM. 

3.9.1 Oligonucleotides for mouse genotyping PCR 

Table 3.9: Primers for PCR 

Primer name Sequence: 5´- 3´ 

p73_common_forward GGGCCATGCCTGTCTACAAAGAA 

p73_WT_reverse CCTTCTACACGGATGAGGTG 

p73_KO_reverse GAAAGCGAAGGAGCAAAGCTG 

TAp73_common_forward CTGGCCCTCTCAGCTTGTGCCACTTC 

TAp73_WT_reverse CTGGTCCAGGAGGTGAGACTGAGGC             

TAp73_KO_reverse GTGGGGGTGGGATTAGATAAATGCCTG      

3.9.2 Oligonucleotides for quantitative PCR 

Table 3.10: Oligonucleotides for quantitative PCR 

Primer name Sequence: 5´- 3´ 

Adam23_forward TGTCCTTGGGGGCACAGGCT 

Adam23_reverse TCCGGCAGCATGGCTGAAAACA 

FSH_beta_forward CAGTAGAGAAGGAAGAGTGCCG 

FSH_beta_reverse CGGTCTCGTATACCAGCTCC 

GnRH_forward_1 GGGTTGCGCCCTGGGGGAAA 

GnRH_reverse_1 CTGAGGGGTGAACGGGGCCAG 
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GnRH_forward_2 CCCCGTTCACCCCTCAGGGAT 

GnRH_reverse_2 CCACCTGGGCCAGTGCATCTAC 

Itgax_forward GGCAGCTGTCTCCAAGTTGCTCA 

Itgax_reverse TGGTGCTCCAACCACCACCCA 

Itga5_forward GCGTGCCCAAGGGGAACCTC 

Itga5_reverse AGCAGGGGTGCCCCTACCAG 

LH_beta_forward GCCGGCCTGTCAACGCAACT 

LH_beta_reverse TGGGGTCTACACCCGGTGGG 

p73_pan_forward GGGCCATGCCTGTCTACAAGAA 

p73_pan_reverse GATGGTGGTAAATTCTGTTCC 

TAp73_forward GAGCACCTGTGGAGTTCTCTAGAG 

TAp73_reverse GGTATTGGAAGGGATGACAGGCG 

ΔNp73_forward GTGTGCAGACCCCCACGAGC 

ΔNp73_reverse GGTATTGGAAGGGATGACAGGCG 

Serpina3n_forward CAGCAGCCTCGTCAGGCCAA 

Serpina3n_reverse GCCTCCTCTTGCCCGCGTAG 

Serpin6b_forward TGCTGACAGCCTGAACCTGGGG 

Serpin6b_reverse GCCAGGGCTGAGGAGACGCT 

Serping1_forward GGAGCCGCTTGCTCAGTGCTC 

Serping1_reverse GCTCTTGGTGCTGTCTCCAGCC 

Timp1_forward CACCAGAGCAGATACCATGATGGC 

Timp1_reverse TATCTGCGGCATTTCCCACAGC 

Tnfrsf12a_1var_forward TTCTTGCCTCGGGACCGGCA 

Tnfrsf12a_1var_reverse TTGTCGAGGTCCGCGCTCCA 
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Vimentin_forward AGGAGCTGCAGGCCCAGATTCA 

Vimentin_reverse GCAGGGCATCGTTGTTCCGGT 

36B4_forward GCAGATCGGGTACCCAACTGTTG 

36B4_reverse CAGCAGCCGCAAATGCAGATG 

3.10 Mouse strains 

TAp73KO, p73KO and corresponding WT strains were bred at the animal facility of the ENI 

(European Neuroscience Institute) in Göttingen. Mice were held in accordance to the 

restrictions of the German law regarding animal experiments. TAp73KO founder animals 

were kindly provided by Prof. Dr. Tak Mak from the Campbell Family Institute for Breast 

Cancer Research Ontario in Toronto, Canada. p73KO founder animals were a gift by Prof. 

Dr. Xin Lu from the Ludwig Institute for Cancer Research in Oxford, UK. ΔNp73KO and 

corresponding WT tissue samples were kindly provided by André Goffinet from the 

Developmental Neurobiology lab of the University of Louvain in Brussels, Belgium.  

Table 3.11: Mouse strains 

KO  Background Generation 

 p73 total  129/Sv  N7 

 TAp73 specific  C57BL/6J  N6 

 ΔNp73 specific  Mixed 129/Sv and C57BL/6   -- 

3.11 Software 

Table 3.12: Software 

Name Company 

Adobe Photoshop CS5  Adobe Systems, San Jose, CA, US 

AxioVision 4.8  Carl Zeiss 
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CFX Manager Software for qPCR cycler  Bio Rad 

Excel  Microsoft, Redmond, WA, US 

Nanodrop Software  Peqlab 

R (version 2.14.0)  The R foundation for statistical computing 

UV Imager Software  Intas Science Imaging Instruments 
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4 METHODS 

4.1 Mouse histology 

4.1.1 Tissue preparation  

TAp73, p73 and ΔNp73 KO and WT mice between 3 to 18 weeks of age were euthanized 

with carbon dioxide. Preparation was done by fixing the mice on the preparation table, 

cleaning them with ethanol and performing a Y-cut. Testes and epididymes were taken out 

and all connected fat tissue was removed. Before further processing testes size was 

measured using a caliper and testis weight was determined with a special accuracy balance. 

At this step also images of whole testes were taken for some samples, using the 

stereomicroscope Leica KL 1500 LCD and the DFC 480 camera. As other organs (brain, 

thymus and liver), one testis was frozen in liquid nitrogen and used for later RNA isolation 

(refer to 4.3.4). The other testis and epididymis was either fixed for subsequent histologic 

staining or the testis was used for electron microscopy (EM) analysis. 

4.1.1.1 Fixation and processing for histologic staining 

For subsequent immunohistologic stainings each prepped testis was enclosed in a labeled 

plastic grid and fixed in 4% Formalin/PBS fixation buffer at room temperature on a shaker 

overnight for at least 20 hours. After 3 times washing with PBS for 1 hour, tissue was 

dehydrated using an ascending alcohol series (Table 4.1). Dehydrated samples were 

transferred to liquid paraffin in a 60°C oven and paraffin was changed 3 times, once per day, 

to allow paraffin infiltration of the whole tissue. Tissue samples were embedded in paraffin 

using the Microm EC350 embedding station and left on a cooling plate for hardening. 

Precooled paraffin blocks could then be sectioned at the rotation microtome Leica RM2235. 

Transversal and longitudinal sections were transferred to a 40°C warm water bath to smooth 

the tissue and remove wrinkles. Sections were either shifted to “Eiweiß”-glycerin-coated 

slides for subsequent H&E staining or to superfrost plus coated slides for all other staining 

procedures. Charged superfrost slides can hold the tissue even under harsh conditions like 

boiling. To ensure sticking of the tissue to the slides, slides were left in an incubator at 60°C 

overnight. For all staining procedures 3µm thick sections were used.  
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Table 4.1: Ascending alcohol series prior to embedding 

 Alcohol Incubation time 

2x 50% ethanol 15 minutes 

1x 70% ethanol 30 minutes 

1x 70% ethanol overnight 

2x 80% ethanol 30 minutes 

2x 90% ethanol 45 minutes 

2x 96% ethanol 60 minutes 

2x 100% ethanol 45 minutes 

1x 100% isopropanol overnight 

1x 75% isopropanol/25% xylol 30 minutes 

1x 50% isopropanol/50% xylol 30 minutes 

1x 25% isopropanol/75% xylol 30 minutes 

2x 100% xylol 60 minutes 

1x 100% xylol overnight 

4.1.1.2 Fixation and processing for electron microscopy (EM) 

After dissection of the testis, the tissues were fixed by immersion using the 2.5 % 

glutaraldehyde/cacodylate fixation buffer for EM. Fixation of the testes were performed for 10 

min at room temperature, before they were cut into small pieces and fixed overnight in the 

fixative at room temperature. The subsequent steps were performed by the research group of 

Dietmar Riedel in the facility for transmission electron microscopy at the Max Planck Institute 

for Biophysical Chemistry in Göttingen. After postfixation in 1% osmium tetroxide and 

preembedding staining with 1% uranyl acetate, tissue samples were dehydrated in a series of 

ethanol and embedded in Agar 100. Thin sections (30-60 nm) were counterstained with 

methanolic uranyl acetate and lead citrate and examined using a Philips CM 120 BioTwin 

transmission electron microscope (Philips Inc.Eindhoven, The Netherlands). Images were 

taken with a 1K slow scan CCD camera (Olympus SIS, Münster). 9 to 10 mice per genotype 

were analyzed. 

4.1.2 Haematoxylin and Eosin (H&E) staining 

H&E staining is a classical histologic method to visualize all cells within the tissue and get 

information about the morphology and different structures of the analyzed organs. Thereby, 

Haemalaun stains the basophilic nuclei, while Eosin reacts with the acidophilic cytoplasma. 

For H&E staining testis sections were rehydrated using a descending alcohol series (Table 

4.2). The tissue has to be rehydrated to enable staining in hydrophilic staining solutions. 

Furthermore, the remaining paraffin is removed during this procedure. After washing the 
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slides in distilled water, sections were stained in Haemalaun solution for 5 minutes and 

excess Haemalaun was removed by short incubation in differentiation solution. To enable the 

final staining reaction by increasing the pH, slides had to be incubated in running tab water 

containing ions for 10 minutes.  

Table 4.2: Descending alcohol series – H&E 

 Alcohol Incubation time 

4x 100% xylol 5 minutes 

1x 100% isopropanol 4 minutes 

1x 96% isopropanol 4 minutes 

1x 90% isopropanol 3 minutes 

1x 80% isopropanol 3 minutes 

1x 70% isopropanol 3 minutes 

1x 50% isopropanol 3 minutes 

1x aqua bidest rinse 

 

The following Eosin staining was done for 1 to 5 minutes dependent on the strength of the 

solution. After washing in distilled water slides had to be dehydrated in an ascending alcohol 

series (Table 4.3). Embedding of tissue sections was performed using the hydrophobic 

embedding solution Roti-Histokit II. Images were taken at the Zeiss Axio Scope. A1, using the 

AxioCam MRc and the AxioVision 4.8 Software.  

Table 4.3: Ascending alcohol series – H&E 

 Alcohol Incubation time 

1x aqua bidest rinse 

1x 50% ethanol rinse 

1x 70% ethanol rinse 

1x 90% ethanol rinse 

2x 100% ethanol 4 minutes 

1x 50% isopropanol/50% xylol rinse 

4x 100% xylol 5 minutes 

4.1.3 Immunohistochemistry staining (IHC) 

To obtain information about the expression and localization of specific proteins, IHC staining 

with protein specific antibodies can be applied to tissue sections. A primary antibody directed 

against the protein of interest (POI) is produced by immunizing a certain species (i.e. mouse, 

rabbit, rat, donkey) with a small peptide of your POI. It will specifically detect the POI. To 
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amplify the signal and visualize the protein within the tissue a secondary antibody directed 

against the species, where the first antibody was produced in, is used. This antibody is 

coupled to biotin. By introducing a third step, addition of the extravidin-coupled peroxidase, 

extravidin will cross-link different biotin molecules further amplifying the signal. The enzyme 

peroxidase will finally visualize the protein by producing a precipitate, when converting its 

substrate 3,3`-Diaminobenzidin-tetrahydrochloride (DAB).  

For IHC staining sections had to be rehydrated as described for H&E (Table 4.2). To 

permeabilize the tissue, sections were boiled in antigen retrieval solution 3 times for 5 

minutes. After washing in distilled water sections were incubated in peroxidase blocking 

buffer for 10 minutes. This step blocks the endogenous peroxidase to ensure specific staining 

of the POI. Sections were transferred into the Shandon Coverplate System and washed 2 

times with PBS. For all following steps 120µl solution per slide were taken. Saturation of 

unspecific binding sites was achieved by blocking the sections with 10% FCS blocking 

solution for 45 minutes at room temperature. Incubation with the primary antibody was done 

overnight at 4°C. After washing with PBS slides were incubated with the biotinylated 

secondary antibody for 45 minutes at room temperature. For used primary and secondary 

antibodies refer to 3.8. Incubation with the extravidin-peroxidase was done for 1 hour at room 

temperature after another washing step with PBS. Slides were removed from the Shandon 

Coverplate System and transferred into PBS. The enzyme reaction was enabled by adding 

the DAB containing developing solution to the slides. Dependent on the antibody, sections 

were developed for 1 to 10 minutes until a strong brown precipitate could be seen. The 

reaction was stopped with water. Cell nuclei were counterstained with Haemalaun as 

described in chapter 4.1.2. After dehydrating the slides in an ascending alcohol series (Table 

4.4), they were embedded in Roti-Histokitt II. Images were taken at the Zeiss Axio Scope. A1, 

using the AxioCam MRc and the AxioVision 4.8 Software. For analysis and quantitation of 

stainings refer to 4.1.7. 

Table 4.4: Ascending alcohol series – IHC 

 Alcohol Incubation time 

1x aqua bidest rinse 

1x 50% isopropanol rinse 

1x 70% isopropanol rinse 

1x 90% isopropanol rinse 

2x 100% isopropanol 4 minutes 

1x 50% isopropanol/50% xylol rinse 

4x 100% xylol 5 minutes 
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4.1.4 Immunofluorescence staining (IF) 

Similar to IHC staining IF staining is performed to detect specific proteins within the tissue. 

However, visualization of the protein is not enabled by an enzymatic reaction, but through 

fluorescence-labeled secondary antibodies. The advantage of this method is the possibility to 

detect several proteins at once in one sample, using different primary antibodies produced in 

different species as well as corresponding secondary antibodies with fluorescence-labels of 

different wavelength. Additionally, the signal might be stronger in IF staining, but it will fade 

faster and has to be protected against light. Each fluorophore has to be stimulated with a 

specific excitation wavelength to emit and detect light of a specific higher wavelength, which 

can be achieved with fluorescence microscopes. Commonly used excitation wavelengths are: 

358nm (blue light, i.e. 4`,6-diamidino-2-phenylindole (DAPI)), 488 nm (green light, i.e. 

AlexaFluor 488) and 594 nm (red light, i.e. AlexaFluor 594). 

For IF staining sections had to be rehydrated in a descending alcohol series (Table 4.2). 

Antigen retrieval was done as described for IHC staining. After washing with PBS slides were 

transferred into the Shandon Coverplate System and unspecific binding of antibodies was 

blocked by incubation with 10% FCS blocking solution for 45 minutes at room temperature. 

Primary antibody staining was performed overnight at 4°C. The next day the secondary 

antibody was applied for 45 minutes at room temperature, after washing the slides with PBS. 

For used primary and secondary antibodies refer to 3.8. Nuclei were counterstained by 

incubating the sections with DAPI (0.5µg/ml in PBS) for 5 minutes. After 3 additional washing 

steps with PBS, slides were mounted with fluorescence mounting medium. Images were 

either taken at the Zeiss Axio Scope. A1 using the AxioCam MRc and the AxioVision 4.8 

Software or at the Zeiss confocal microscope LSM 510 meta (high resolution of DAPI stained 

testis sections to distinguish sperm cell types). For analysis and quantitation of stainings refer 

to 4.1.7. 

4.1.5 TUNEL assay 

The TUNEL assay, TdT-mediated dUTP-X nick end labeling, is a method for detecting 

apoptotic cells. During apoptosis DNA of dying cells gets fragmented and these 

oligonucleotide fragments can be labeled by an enzymatic reaction. The enzyme terminal 

deoxynucleotidyl transferase (TdT) is able to catalyze a template-independent polymerization 

of deoxyribonucleotides to the 3´-end of single- and double-stranded DNA. Thereby, modified 

nucleotids, like fluorescin-dUTPs, are used as source for the TdT to label the fragmented 

DNA. 
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Comparable to IF staining, sections had to be rehydrated up to water and permeabilized 

using the TUNEL antigen retrieval solution. After 3 times washing in PBS, slides were 

transferred to a humidified chamber and sections were incubated with the enzyme reaction 

mix (Roche in situ cell death detection kit) for 1 hour at 37°C. Slides were washed with PBS 

and counterstained with DAPI (0.5µg/ml in PBS) for 5 minutes. After additional washing in 

PBS, sections were mounted using the fluorescence mounting medium. Images were taken 

at the Zeiss Axio Scope. A1 using the AxioCam MRc and the AxioVision 4.8 Software. 

Fluorescin-labeled cells could be detected in the green channel (488nm excitation). 

4.1.6 In vivo Biotin assay 

The in vivo Biotin assay was already described by Nalam et al., 2009. It is performed on 

living, anaesthetized mice to measure the integrity of the BTB in the testis. Thereby the water 

soluble reagent EZLink Sulfo-NHS-LC-Biotin is used. Upon application it will bind 

unspecifically to all primary amines of proteins, forming permanent, irreversible amide bonds. 

Injection in the testis of WT mice will lead to labeling of the basal cell layer in the testis. 

Further layers are not stained, since the BTB prevents diffusion of the reagent into the special 

microenvironment of developing sperm cells. A defect in the BTB would lead to staining of 

further layers in the seminiferous epithelium.  

8 to 9 months old animals were anesthetized using 0.5 to 1ml of the anesthesia working 

solution and testes were exposed. 50µl of 5mg/ml EZLink Sulfo-NHS-LC-Biotin that had been 

freshly prepared in PBS-CaCl2 were injected into the testicular interstitium. The contralateral 

testis was injected with PBS-CaCl2 solution only and served as a negative control. After 30 

min had elapsed, the animals were euthanized, and the testes were harvested and fixed in 

4% Formalin/PBS fixation buffer. Embedding and sectioning was done as described in 

chapter 4.1.1.1. Testis sections were subsequently stained for immunofluorescence (refer to 

4.1.4). Slides were probed sequentially with streptavidin-Texas Red, to detect the infiltrated 

biotin, and anti-espin antibody followed by AlexaFluor 488 donkey anti-mouse secondary 

antibody. Images of mounted sections were taken at the Zeiss Axio Scope. A1 using the 

AxioCam MRc and the AxioVision 4.8 Software. Texas Red labeled tissue could be detected 

in the red channel (594nm excitation). 

4.1.7 Quantitation of histologic stainings  

All quantitation were done with the help of the AxioVision 4.8 Software. 
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4.1.7.1 H&E staining – sperm cell mass 

The relative sperm cell mass per testicular tubule was determined using H&E staining of 

testis sections. Therefore, the total tubule area as well as the cell area within the tubule was 

measured. The relative sperm cell mass was calculated in percent as ratio between cell area 

and tubule area. Per mouse 8 tubules were analyzed. The mean value and the standard 

deviation of the mean (SDM) were calculated for 4 to 5 mice per genotype.  

Furthermore, tubules were classified into three categories, according to their sperm amount: 

low (only 1 to 3 layers remain of the seminiferous epithelium), middle (4 to 5 layers are visible 

in the seminiferous epithelium) and high (at least 6 layers are visible). All tubules of 3 areas 

per section were counted and the relative amount of tubules with low, middle and high sperm 

amount was calculated in percent. The mean value and the SDM were calculated for 5 mice 

per genotype.  

4.1.7.2 GCNA1 staining – number of spermatogonia 

The relative number of spermatogonia was determined by analyzing GCNA1 IHC-stained 

testis sections. The number of basal, GCNA1 positive cells per 120µm was counted. 10 

distances were analyzed per mouse. The mean value and the SDM were calculated for 3 to 5 

mice per genotype.  

4.1.7.3 Ki67 staining – quantitation of proliferation 

To gain information about the proliferation rate in testicular tubules, Ki67 stained testis 

sections were analyzed. Ki67 positive tubules, relative to the total tubule amount within the 

section, were calculated in percent. 3 sections were analyzed per mouse. The mean value 

and the SDM were calculated for 2 to 5 mice per genotype.  

4.1.7.4 H3Ser10 staining – quantitation of meiotic rate 

To determine the meiotic rate within the seminiferous epithelium, H3Ser10 stained testis 

sections were analyzed. Therefore, all H3Ser10 positive cells were counted per testis section. 

3 sections were analyzed per mouse. The mean value and the SDM were calculated for 2 to 

5 mice per genotype.  

4.1.7.5 WT1 staining – Sertoli cell number 

The relative number of Sertoli cells was determined by analyzing WT1 IF-stained testis 

sections. Therefore, the number of WT1 positive cells per tubular circumference was counted 
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and scaled up to the correspondent length in mm. 20 to 25 tubules were analyzed per mouse. 

The mean value and the SDM were calculated for 2 to 5 mice per genotype.  

4.1.7.6 Vimentin – Sertoli cell arms 

To analyze the morphology of Sertoli cells, the length of Sertoli cell arms was calculated 

using Vimentin stained testis sections. Therefore, all cytoplasmic arms, reaching from the 

basal layer towards the tubular lumen, were measured in length (µm) within one view (200x 

magnification). The sum of all measurements per area was taken and determined as the 

“total length” of Vimentin Sertoli cell arms. 5 to 10 areas were analyzed per mouse. The 

mean value and the SDM were calculated for 3 mice per genotype.  

4.1.7.7 Timp1 staining – intensity 

The intensity of Timp1 stained testis sections was analyzed in Adobe Photoshop CS5. 

Therefore, images were taken at the Zeiss Axio Scope. A1 using the AxioCam MRc and the 

AxioVision 4.8 Software. Same exposure times were applied to all sections. The mean gray 

value within an area of fixed size embedded in the seminiferous epithelium was determined. 

3 to 5 images were analyzed per mouse. The mean value and the SDM were calculated for 5 

to 7 mice per genotype. 

4.1.7.8 Biotin staining – infiltration  

The intensity of Texas Red stained, Biotin-infiltrated tissue was analyzed in Adobe Photoshop 

CS5. Therefore, images were taken at the Zeiss Axio Scope. A1 using the AxioCam MRc and 

the AxioVision 4.8 Software. Same exposure times were applied to all sections. The 

seminiferous epithelium of TAp73KO mice was classified into high germ epithelium (more 

than 3 cell layers) and low germ epithelium (1 to 3 cell layers). The mean gray value within an 

area of fixed size embedded in the seminiferous epithelium was determined for WT sections 

and the two categories of TAp73KO epithelium. The mean value and the SDM were 

calculated for 4 to 5 mice per genotype. 

4.2 Primary cell culture of Sertoli cells 

4.2.1 Preparation and culturing of Sertoli cells 

To analyze Sertoli cell structure and function of TAp73 mice of different genotypes in vitro, 

preparation of primary Sertoli cells was done. For each isolation procedure both testes were 
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taken to increase the Sertoli cell amount. Sectioned testes were transferred into PBS and 

decapsulated in 5ml Hanks' Balanced Salt Solution (HBSS) in a small cell culture dish. 

Together with the HBSS, testicular tubules were transferred into 15ml Falcons. Tubules were 

washed two times in 5ml PBS by sedimentation. The tissue was dispersed by adding 3-4ml of 

Collagenase/Hyaluronidase/DNase-HBSS solution and incubating the samples for 20 

minutes at 37°C on a shaker. After two washing steps with 5ml PBS and sedimentation of the 

tubules, another digestion step was performed. Therefore, 3-4ml of Trypsin-HBSS solution 

were added and samples were incubated for 15 minutes at 37°C on a shaker. The tubules 

were washed two times with 5ml PBS and 2ml DMEM/F12 were added to the sedimented 

pellet. To fragment the tissue and free the Sertoli cells from the seminiferous epithelium 

tubules were resuspended several times. Cells were pelleted by centrifugation at 300g for 3 

minutes. The supernatant, enriched for Sertoli cells, was transferred to a new falcon. Again 

2ml DMEM/F12 were added to the cell pellet and cells were resuspended strongly. After 

centrifugation the supernatant was pooled with the first obtained supernatant. Sertoli cells 

were equally distributed onto four wells of 12-well plates. Cells were cultured at 34°C 

(testicular temperature) with 5% CO2 in DMEM/F12, containing 5% FCS. The remaining 

sperm pellet was kept for RNA isolation (refer to 4.3.4). 

After two days, when Sertoli cells were attached to the cell culture plate, media was changed. 

To obtain a clean Sertoli cell culture without contaminating sperm cells, sperm was removed 

by hypotonic shock. Sertoli cells could be expanded to 6-well plates (2ml media per well) 

after 2 to 3 weeks. Therefore, Sertoli cells were washed with PBS and transferred to new 

wells by trypsination and addition of new media. Sertoli cells grew very slowly and could be 

transferred or expanded to new plates every 1 to 2 weeks. To ensure viability of the cells, 

they should only be splitted, if they reach a density of at least 90%. Media change was 

performed every 2 to 4 days.  

For growth and trypsination control, Sertoli cells were examined under the Zeiss microscope 

Axiovert 40C. Images of different passages of Sertoli cells were taken at the Zeiss 

microscope Axiovert 40 CFL, using the AxioCam ICm1 and the AxioVision 4.8 Software.  

4.2.2 Immunofluorescence staining  

To test the purity of the primary Sertoli cell culture, immunofluorescence (IF) staining using 

the Sertoli cell marker Vimentin was performed. Applying IF staining to fixed cells, to detect a 

specific antigen, works in the same way as IF staining on paraffin tissue sections (refer to 

4.1.4).   
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Sertoli cells were seeded on Geltrex-coated 8 well chamber slides. When they had reached 

around 80% confluence, they were washed two times with PBS and fixed in 4% Formalin-

PBS fixation buffer for 20 minutes at room temperature. After two washing steps with PBS 

cells were permeabilized by incubation with the Triton-based permeabilization buffer for 10 

minutes. Sertoli cells were rinsed in PBS two times and unspecific binding sites were blocked 

by incubating the cells in 5% FCS blocking solution for 30 minutes at room temperature. The 

primary antibody (Vimentin) was diluted in blocking solution and applied to the cells. After 

incubation for 1 hour at room temperature, cells were washed three times in PBS and 

incubated with the secondary antibody for 45 minutes at room temperature. For used primary 

and secondary antibodies refer to 3.8. Counterstaining of nuclei with DAPI was performed for 

5 minutes, after another two washing steps with PBS. Sertoli cells were rinsed in PBS for 3 

times and mounted in fluorescence mounting medium. Images were taken at the Zeiss Axio 

Scope. A1 using the AxioCam MRc and the AxioVision 4.8 Software. 

4.3 Molecular biology 

4.3.1 Isolation of genomic DNA from murine tails 

For genotyping of the different mouse strains genomic DNA has to be gained from murine 

biopsies, in this case mouse tails. For DNA isolation the Invisorb Spin Tissue Mini Kit from 

Stratec was used. Lysis of the tails and isolation of DNA via a column-based purification was 

done after the manufacture’s protocol. All steps were performed at room temperature. In 

short, tails were lysed in the provided lysis buffer combined with proteinase K. After digestion 

at 52°C on a shaker for 4 up to 20 hours, the lysate was mixed with the binding buffer and 

applied to the column. The samples were shortly incubated to allow binding of the DNA and 

the flow through after centrifugation was discarded. All centrifugation steps were done for 1 to 

2 minutes at 13.000 rpm. After 2 washing steps with the ethanol-based washing buffer, 200µl 

elution buffer were applied per column and the samples were incubated for 3 minutes. The 

eluat contained the purified genomic DNA that was used for the subsequent genotyping-PCR 

(refer to 4.3.2). 

4.3.2 Polymerase chain reaction (PCR) 

Genotyping of running p73 and TAp73 mouse strains was done by amplifying genotype 

specific sequences by polymerase chain reaction (PCR). Using gene specific primers the 

PCR allows to amplify specific sequences in a DNA template in a rapid 3 step process. The 
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denaturation step at high temperature results in melting of the double-stranded DNA into 

single-stranded DNA. Now specific primers are able to bind to the target sequence during the 

annealing step. The applied temperature is dependent on the length and nucleotide 

composition of the primers. Finally a thermo-stable DNA polymerase will extend the annealed 

primers, amplifying the sequence of interest. By repetition of these steps for 30 to 40 times 

the target sequence will be amplified in a near-exponential manner.   

For the p73 and TAp73 genotyping PCRs a basic PCR reaction mix was used (Table 4.5). To 

distinguish between WT and KO allele three primers were used in one PCR reaction. One of 

these primers was able to bind to the WT as well as to the KO allele (common primer). The 

other two primers were either specific for the WT (gene sequence) or for the KO (Neo 

cassette). By choosing different sizes for the two amplified PCR products, WT, Het and KO 

could be determined in one reaction. For primer sequences refer to 3.9.1. The PCR program 

of the PCR thermocycler is displayed in Table 4.6. Annealing temperatures were adjusted to 

lie below the melting temperatures of the used primers. Elongation time was adjusted 

dependent on the PCR product length.  

Table 4.5: PCR reaction mix 

 Final concentration Per reaction [µl] 

10x Taq buffer KCl+ 1x 2.5 

dNTPs (20 mM) 0.13 mM 0.16 

Primer common (100 µM) 1 µM 0.25 

Primer WT (100 µM) 1 µM 0.25 

Primer KO (100 µM) 1 µM 0.25 

MgCl2 (25mM) 2.5 mM 2.5 

Taq polymerase (5 U/µl) 1 U/reaction 0.2 

H2O  ad 25.0 

+ DNA template  1.0 - 2.0  

Table 4.6: PCR program (p73/TAp73) 

Step Temperature

e 

   Time   

Enzyme activation 95°C 3 min  

Denaturation 95°C 60/45 sec  

Annealing 60/70°C 

customize 

90/30 sec 30-35x 

Elongation 72°C 90/120 sec  

Final elongation 72°C 10 min  

 12°C pause  
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4.3.3 DNA gel electrophoresis 

DNA gel electrophoresis is a method to separate the different PCR products of the 

genotyping PCR on an agarose gel. Since the phosphate backbone of the DNA is negatively 

charged DNA will run from the anode to the cathode. Fragments can be separated according 

to their size, small fragments running faster and bigger fragments running slower. 

Visualization of the PCR products is enabled by adding ethidium bromide to the gel, which 

will intercalate into double-stranded DNA and can be visualized by UV light.  

To analyze the genotyping PCR, the PCR products were loaded to a 2% agarose gel. 

Beforehand the appropriate amount of 6x loading buffer was added to the samples. 

Bromphenol blue within the dye enables visualization of the fragments while they are 

separated and sucrose/glycerin will increase the density of the samples preventing that they 

float away from the loading pockets. A DNA ladder yielding bands of defined size was also 

loaded to facilitate size determination of the sample fragments. Samples were run at 120V for 

30 to 45 minutes. Analysis was performed at the UV-transilluminator using the UV Imager 

Software.  

4.3.4 Isolation of total RNA 

RNA isolation was performed on harvested Sertoli cells and sperm pellet (refer to 4.2.1) or on 

prepped murine tissue (refer to 4.1.1). After washing with PBS, Sertoli cells were either 

directly lysed in Trizol reagent or scraped in PBS, centrifuged at 5000 rpm for 10 minutes at 

4°C and the cell pellet lysed in Trizol. The remaining sperm pellet during Sertoli cell 

preparation was washed in PBS, lysed in Trizol and stored at -80°C. Tissue samples were 

fragmented and disrupted in Trizol using a biovortexer. Lysed Sertoli and sperm cells as well 

as tissue samples were incubated for 5 minutes at room temperature. The following steps 

apply to all sample types and steps were done on ice, if not indicated otherwise.  

For RNA separation chloroform was added to the samples, taking 20% of the used Trizol 

amount. After vortexing the samples for 15 seconds and incubation at room temperature for 2 

minutes, they were centrifuged at 13.000 rpm for 15 minutes at 4°C. The aqueous phase, 

containing the separated RNA, was transferred into a new eppendorf tube. The RNA 

extraction step with chloroform could be repeated to obtain a higher amount of RNA. 100% 

pure ethanol, 3 times the amount of the aqueous phase, was added to the aqueous phase 

and precipitation was performed over night at -20°C. The next day, residual Trizol was 

removed from the samples by pelleting the RNA at 13.000 rpm at 4°C and washing it with 

70% ethanol. The dry RNA pellet was dissolved in nuclease-free water. A further clean up 
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step could be performed to remove possible protein contamination and ensure purity of the 

RNA. Therefore, another ethanol precipitation step with shock freezing of the samples in 

liquid nitrogen followed by a washing step was performed. After determining the 

concentration of water-resolved RNA (refer to 4.3.5), samples could be used for RT-PCR 

(refer to 4.3.6.1).    

4.3.5 Determination of RNA concentrations 

RNA concentrations were measured with the NanoDrop Spectrophotometer. The absorption 

at a wavelength of 260 nm was determined using 1.5µl of each RNA sample. To calculate the 

corresponding RNA concentration in the sample, the resulting absorption coefficient was 

used. This was automatically done by the Nanodrop Software.   

4.3.6 Quantification of messenger RNA (mRNA) by PCR 

To quantify the amount of a certain RNA transcript (gene of interest, GOI) from a cell line or 

tissue sample, quantitative PCR (qPCR) is performed. Therefore, the isolated total RNA pool 

(refer to 4.3.4) has to be reverse transcribed into complementary DNA (cDNA), which is done 

by RT-PCR (4.3.6.1). The cDNA pool can now be used for qPCR to amplify the GOI using 

sequence-specific primers, while measuring the amount of the polymerized PCR product in 

real time (4.3.6.2). 

4.3.6.1 Reverse transcriptase PCR (RT-PCR) 

RT-PCR allows the unspecific reverse transcription of the total RNA pool into cDNA. This is 

accomplished by using a viral enzyme, the reverse transcriptase (RT), which is able to 

polymerize cDNA using mRNA as target sequence. The total RNA pool is reverse transcribed 

by adding oligo-dT primers as well as random nonamer primers to the reaction. Oligo-dT 

primers can bin to the poly-A tails of RNAs, enabling polymerization of the cDNA from the 

3`end. Dependent on their random nonamer sequence, nonamer primer can bind to the 

complementary sequence in any RNA and enable polymerization independent of a poly-A 

tail.  

After measurement of RNA concentration (refer to 4.3.5), 1µg sample RNA was added to the 

RT-PCR reaction tube and filled with nuclease-free water up to 10µl. Two tubes were 

prepared for each sample to also run a negative control in parallel to ensure purity of the 

RNA. 6µl of mix 1 were added to each sample and probes were heated up at 70°C for 5 

minutes to open RNA and resolve secondary structures. Mix 2 contained the RT and 4µl 
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were added to one prepared sample to obtain cDNA transcription. Mix 3 contained the same 

reagents as mix 2, but without the RT, to serve as negative control (DNA contamination). 

Preparation of master-mix 1 to 3 is displayed in Table 4.7. Reverse transcription was enabled 

by incubating the 20µl samples at 42°C for 1 hour. Enzyme reaction was stopped at 95°C. 

Samples were diluted to 50µl with water. Reaction size could also be scaled down to 0.5µg or 

up to 2µg RNA. cDNA samples were subsequently used for qPCR analysis.  

Table 4.7: RT-PCR mix 1-3 

 Per reaction [µl] 

Mix 1 

 

6.0 

mixed Primer (100µM) (nonamer and dT23VN) 

 

2.0 

dNTP mix (2.5 mM) 4.0 

Mix 2 4.0 

10x reaction buffer 2.0 

RNase Inhibitor (10U) 0.25 

M-MuLV reverse transcriptase (RT) (25U) 0.125 

DEPC water 1.625 

Mix 3: Mix 2, without RT 4.0 

4.3.6.2 Quantitative real-time PCR (qPCR) 

Quantitative real-time PCR (qPCR) enables real-time measurement of a (c)DNA sequence of 

interest during amplification via PCR. Therefore, the amount of a specific cDNA within the 

total cDNA pool can be determined by using sequence specific primers. Here, qPCR was 

used to quantify mRNA levels. For primers refer to 3.9.2. Sequence-specific primers were 

designed in this way that a short fragment (100 to 300 bp) of the cDNA template was 

amplified. To exclude unspecific amplification of intron-containing genomic DNA, only primers 

were used that were spanning exon-junctions or that were located in different exons. Real-

time measurement of the PCR product was possible by adding the intercalator SybrGreen to 

the PCR-mix. SybrGreen is a fluorescent dye and can only bind to double-stranded DNA. It 

can be detected by excitation with a certain wavelength and read out was performed at every 

amplification cycle of the PCR reaction directly after the elongation step (Table 4.10). 

Quantitation of the cDNA amplification is displayed in a logarithmic graph. After passing the 

threshold of detection, the amount of PCR product will increase in a linear manner with every 

cycle until saturation is reached. Ideally, the sequence of interest will be doubled every cycle 

(100% amplification efficiency). Calculation of the DNA amount can be done within the linear 

range of the graph. The obtained data point is referred to as Ct-value, cycle over threshold. A 
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high Ct-value correlates to a low amount of DNA, a low Ct-value to a higher amount. For 

normalization the Ct-value of the cDNA of interest is calculated against the Ct-value of a 

housekeeping gene (reference gene), which shows stable expression levels independent of 

the sample.  

Here, a ribosomal subunit was used as reference gene for all qPCR reactions (36B4). 

Relative quantitation of the PCR product of KO and WT samples was performed by applying 

the ΔΔCt method. The executed calculation for the relative mRNA expression is the following: 

  

2 (ΔCt (reference gene KO/target gene KO)) – (ΔCt (reference gene WT/target gene WT)) 

 

For all samples the qPCR reaction master mix was used (Table 4.8). A two-step PCR 

program was applied to all reactions. Annealing and elongation were performed at 60°C. 

Purity of the qPCR product was controlled by measuring the melting curve after the PCR 

reaction. It should yield a single melting point for a specific product (Table 4.9). cDNA 

resulting from RT reactions without reverse transcriptase and qPCR samples without cDNA 

template served as negative controls. All samples were analyzed in triplicates.  

Table 4.8: Master mix for qPCR reaction 

 Volume [µL] 

25x qPCR reaction mix 14.0 

Forward primer (100 pmol/µL) 0.15 

Reverse primer (100 pmol/µL) 0.15 

H2O 9.7 

+ cDNA 1.0 

Total volume 25.0 

Table 4.9: Cycler program for qPCR 

Temperature Time  

95°C 2 min  

95°C 15 sec  

60°C 

customize 

1 min - read 40x 

Melting curve   
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4.3.7 Whole genome microarray  

To compare the total mRNA expression pool of TAp73KO and WT testis, a whole genome 

microarray was performed. For each genotype 3 adult mice (10 weeks old) were objected to 

the analysis. Total RNA was isolated from testis tissue as described in 4.3.4. The additional 

clean up step ensured purity of the RNA. RNA was handed to the transcriptome analysis 

laboratory (TAL) in Göttingen, where the samples were objected to microarray analysis. In 

short, RNA quality was controlled, RNA concentration was determined and 200ng of samples 

were reverse transcribed into cDNA. The labeling reaction was performed by adding Cyanine 

3-CTP (Cy3-CTP) to the transcription master mix including the sample cDNA, dNTPs and the 

T7 RNA polymerase. This enzyme is able to transcribe cDNA into aRNA. The Cy3-labeled, 

purified and amplified aRNA was hybridized to the microarray slide, where it binds to the 

complementary sequences printed on the array. Printed probes contained the 3´ sequences 

of the corresponding mRNAs. Fluorescence detection and intensity measurement was 

enabled by readout of the array plates with a laser, exciting the fluorescence dye Cy3. Strong 

emission at a certain RNA spot resembles high expression of this specific gene in the 

sample. Data analysis was done by Lennart Opitz. Combined TAp73KO data were analyzed 

relative to combined WT samples. The threshold of deregulated mRNA expression in 

TAp73KO testis compared to WT was set to 2, resulting in 160 hits. Induction was calculated 

as log2 values. Positive numbers indicate upregulation, negative numbers downregulation of 

gene expression in TAp73KO mice, compared to WT mice. The table of all TAp73-regulated 

genes can be found in the appendix. 

4.4 Measurement of serum hormone levels 

To measure the amount of different hormone levels within the serum, blood was taken from 

freshly euthanized mice. The thorax was opened and the still pumping heart was punctured 

with a syringe. Collected blood was incubated overnight at 4°C to enable agglutination of 

blood cells. The next day samples were centrifuged at 4000 rpm at 4°C for 20 minutes. The 

supernatant, containing the serum, was transferred into a new eppendorf tube and 

subsequently used for measurement of hormone levels of FSH, LH and testosterone. All 

hormone levels were determined performing ELISA-assays. The Enzyme-linked 

immunosorbent assay, or short ELISA, is an antibody-based method to specifically detect 

surface or bead-attached antigens (hormones) and quantify their amount in the sample with 

help of an antibody-coupled enzyme. After addition of the substrate, the converted product 

can be measured by spectrophotometry.  
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Testosterone levels were kindly measured by Wagnerstibbe in Göttingen, using the 

testosterone II RIA kit from Roche (cobas, #05200067). FSH as well as LH levels were 

determined by Andrew Wolfe from the division of Pediatric Endocrinology at the Johns 

Hopkins University School of Medicine in Baltimore, USA. The bead-based Luminex ELISA 

from Millipore was used.  

4.5 Statistical analysis 

Statistical calculations were done with Microsoft Excel. Statistical significance was 

determined using the unpaired, one-tailed student’s t-test. Significance was assumed for p-

values below 0.05. Asterisks indicate resulting p-values as follows: * p < 0.05, ** p < 0.01, *** 

p < 0.005. n.s. = not significant. The n in figure legends indicates the number of animals 

analyzed.  
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5 RESULTS 

5.1 TAp73 depletion leads to sperm cell loss in testis 

5.1.1 With completion of the first wave of spermatogenesis, p73KO mice show a 

strong loss of sperm cells throughout the seminiferous epithelium 

Members of the p53 family were described to play various functions during germ cell 

development, protection of genetic stability and maintenance of fertility (Hu et al., 2011, 

Levine et al., 2011). While p53 and p63 are known to regulate the male germ line, p73 

function was only evaluated in the female germ line (Tomasini et al., 2008). p73KO mice 

previously were described to show normal histology of the testis. Infertility was stated as a 

result of the developmental defect of the vomeronasal organ and the accompanied change in 

mating behaviour (Yang et al., 2000). p73 was shown to play an important role in the female 

germ line, but its function in the male germ line was not analyzed in detail so far. Thus, we 

asked whether the loss of p73 might have an impact on testicular development. 

Therefore, p73KO mice of different age were applied to histologic analysis. Testes of p73KO 

mice and WT littermates were removed, fixed in Formalin, dehydrated in an ascending 

alcohol series and embedded in Paraffin. Haematoxylin and Eosin (H&E) staining was 

performed on transverse sections of the testis. 3 weeks old mice (P20) have not yet 

completed the first wave of spermatogenesis. The sperm cell pool mainly consists of 

spermatogonia and spermatocytes, going through the meiotic divisions. Spermiogenesis is 

not finished at this stage and rarely round spermatids can be seen (Bellve et al., 1977, Borg 

et al., 2010). When we compared H&E stainings of testes from 3 weeks old p73KO mice with 

WT testis we observed no difference in testicular histology and the stage-specific germ cell 

pool (Figure 5.1 A). Analysis of testis size and weight revealed slightly smaller and lighter 

testes for p73KO mice (Figure 5.1 A and Table 5.1).  

 

Table 5.1: No difference in testis size and weight of adult p73KO and WT mice. 
 
Quantitation of testis size and weight of young (P20, n=5-6) and adult (P42-P70, n=7-13) mice. 
Adult p73KO testes display similar numbers for size and weight. Testes of developing p73KO mice 
(P20) are slightly smaller and significantly lighter. * = p < 0.05 (Student´s t-test).  
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This observation can be explained by comparing testis size with body size. Newborn p73KO 

mice are known to be smaller and weaker when competing with their WT littermates (Yang et 

al., 2000). By separating p73KO mice from WT littermates after the difference of weight and 

WT 

p73KO 

100x 400x A 

WT 

p73KO 

B 

 
 

 

A+B) Stereomicroscopy of whole testis with epididymis and transverse sections of the testis 
from p73KO and WT littermate mice at stage P20 (A) and P42 (B). Mayer’s haematoxylin and 
eosin (H&E) staining. 6 weeks old p73KO mice show highly decreased numbers of developing 
sperm cells as well as mature spermatozoa. Scale bar = 1mm 

P20 

P42 

Fig. 5.1 Testes of developing p73KO mice show normal morphology. Only with 
adulthood a strong sperm cell loss is visible in p73KO mice compared to WT. 
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size becomes visible, p73KO mice survive and grow to adult mice of comparable size. While 

adult p73KO mice did not show noticeable differences in testis size and weight, we observed 

a striking phenotype for testicular histology (Figure 5.1 B and Table 5.1). In comparison to 

WT testis, 6 weeks old p73KO testis showed a strong sperm cell loss throughout the 

seminiferous epithelium of the tubules. H&E staining of testis sections visualized the reduced 

number of developing sperm cells resulting in a decreased height of the germ epithelium 

(Figure 5.1 B). In contrast to previous studies, these observations indicate for the first time 

that p73 affects the development of the male germ line.  

5.1.2 TAp73 but not ΔNp73 is necessary for sperm development 

Dependent on its isoforms p73 can have certain effects on different cells and tissues. For 

example the transactivating TAp73 isoform and the N-terminal truncated ΔNp73 isoform are 

both known to be expressed in the CNS. TAp73 was lately described to be of importance in 

maintaining the stem cell pool of neural cells (Fujitani et al., 2010, Talos et al., 2010). ΔNp73 

was stated to be an important prosurvival factor of mature neurons of the adult brain (Lee et 

al., 2004a, Tissir et al., 2009). To gain information about the relevance of specific p73 

isoforms for testicular development we subjected TAp73- and ΔNp73-isoform-specific KO 

mice to histologic analysis. When we performed H&E staining on longitudinal sections of 

adult TAp73KO and WT testes we could observe a strong loss of sperm cells in the tubules of 

TAp73KO testis. This reduction of the seminiferous epithelium was comparable to the 

phenotype observed for p73KO mice (Figure 5.2 A). However, when we analyzed adult 

ΔNp73KO testes no difference in testis morphology compared to WT mice could be found in 

H&E stained sections (Figure 5.2 B). Quantitation of a number of p73KO, TAp73KO and 

ΔNp73KO testes revealed 86-100% penetrance of the sperm-loss phenotype for p73 and 

TAp73KO mice. ΔNp73KO testis did not show any morphological changes for all analyzed 

mice (Table 5.2). To look for the mRNA expression levels of p73 and its isoforms, we 

performed qPCR analysis on RNA samples isolated from WT testis, comparing it to murine 

brain, thymus and liver. Expression levels of total p73 in testis were comparable to thymus, 

but significantly lower compared to brain (Figure 5.3). p73 was already described to play a 

role in the immune response and T cell development (Ichimiya et al., 2002, Nemajerova et 

al., 2009, Yang et al., 2000). Therefore, low p73 mRNA level in thymus and testis 

nevertheless have a strong effect on the development of these tissues. When we additionally 

compared the expression levels of TAp73 and ΔNp73 in testis using isoform-specific primers, 

we observed significantly higher mRNA levels for the TAp73 specific isoform of p73 (Figure 

5.3).  
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A) Longitudinal sections of the testis from TAp73KO, p73KO and WT mice at stage P70. H&E 
staining. TAp73KO mice show a strong decrease of the seminiferous epithelium, as observed for 
p73KO mice.  
B) Longitudinal sections of the testis from ΔNp73KO and WT mice at stage P49. H&E staining. No 
sperm cell loss can be observed in isoform specific ΔNp73KO mice. They show normal testicular 
morphology as their WT littermates.  

Fig. 5.2 TAp73KO mice resemble the observed phenotype for p73KO mice, while 
ΔNp73 mice show normal testicular morphology. 
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TAp73 therefore can be stated to be the major isoform expressed in testis, its loss leading to 

a defect in sperm development.  

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5.2: Summary of analyzed p73KO, ΔNp73KO and TAp73KO mice, examining 
H&E stained testis sections. 
 
86% of p73KO and 100% of TAp73KO mice show a middle to strong loss of sperm cells in the 
seminiferous epithelium. Loss of sperm cells was categorized as “strong”, if only 1 to 3 germ cell 
layers were retained in the seminiferous epithelium. If 4 to 5 cell layers were present, the phenotype 
was stated as “middle”. The phenotype was classified as “weak”, if only some tubules showed 
decreased layers. “No” phenotype resembles the WT and Heterozygous (Het) situation. All ΔNp73KO 

mice display normal morphology of the testis. All animals were beyond 5 weeks of age. * Compared to 

its littermates, this 6 week old animal displayed a rather small testis, indicating a slow development.  

Fig. 5.3 TAp73 is the major isoform of p73 expressed in testis.  
 
Quantitation of mRNA isolated from whole organs, performing qPCR with murine 
primers for p73 as wells as isoform-specific primers amplifying TAp73 or ΔNp73. log 
scale of absolute values is depicted. Comparing testis and thymus p73 is expressed in 
a similar extent in both organs. Brain levels are significantly higher. Comparing TAp73 
and ΔNp73 expression in testis, TAp73 is the predominant isoform. n=2-3 mice were 
analyzed per tissue. Error bars represent the SDM. * = p < 0.05 (Student´s t-test).  
  

* 

* 
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5.1.3 During spermatogenesis, the late developing stages of sperm cells are 

lost in p73KO and TAp73KO mice 

TAp73 as well as total p73KO mice show a strong decrease in sperm cell numbers for male 

mice. To look in more detail which type of developing sperm cells is lost in these mice we 

applied immunofluorescence (IF) staining to testis sections of KO and WT mice. To visualize 

meiotic cells and round spermatids, tissue sections were analyzed by using the marker VASA 

(also called DEAD box helicase protein DDX4 or MVH) (Castrillon et al., 2000). TAp73KO 

mice showed a decrease in the VASA positive layer of testicular tubules (Figure 5.4 A). Also 

a strong reduction in spermatid numbers could be observed when TAp73KO testes were 

stained for APG1 (member of the heat shock protein family HSP110), a marker for round and 

elongated spermatids and mature spermatozoa (Held et al., 2006). Additionally we could 

observe a loose, disorganized structure of the seminiferous epithelium, with some developing 

sperm cells detaching from the sperm layers into the lumen (Figure 5.4 A). Confocal 

microscopy on DAPI stained sections confirmed these results. Pachytene spermatocytes 

(Figure 5.4 B; star) could be observed in normal numbers, while round and elongated 

spermatids (Figure 5.4 B; arrow, dashed arrow) were strongly reduced in p73KO mice. Again, 

the disturbed layer structure of developing sperm cells was visible. To quantify the described 

sperm-loss phenotype of p73KO mice, we calculated the ratio of cell mass per tubule and 

additionally classified the tubules concerning their sperm amount (Figure 5.4 C and D). For 

quantitation H&E stained sections were chosen and analyzed using the Axio Vision Software 

(also refer to 4.1.7.1). The analysis confirmed a significantly lower amount of sperm cells 

within the tubule epithelium of p73KO mice. The germ cell mass of the seminiferous 

epithelium of p73KO mice was reduced by 20-30% (Figure 5.4 C). Most of the tubules 

analyzed contained only a small amount of sperm cells, while tubules with a high amount of 

sperm cells were rarely seen in p73KO testes (Figure 5.4 D). To exclude a change in number 

of immature, pre-meiotic cells, KO testes were analyzed for the amount of spermatogonia. 

Immunohistochemistry (IHC) was applied to testis sections of adult KO and WT mice, using 

an antibody directed against the germ cell nuclear antigen 1 (GCNA1), a marker for immature 

germ cells (Enders et al., 1994). While the total amount of sperm cells was highly reduced in 

p73KO and TAp73KO mice, the number of basal spermatogonia did not change (Figure 5.5 

A). The quantitation of GCNA1 positive cells per distance, using the Axio Vision Software, 

confirmed the observed result (Figure 5.5 B). For detailed description of the quantitation refer 

to 4.1.7.2. Taken together, p73KO and TAp73KO mice display a strong decrease of 

developing sperm cells in the seminiferous epithelium. Early stages of sperm development 
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like spermatogonia do not seem to be affected, but numbers of round and elongated 

spermatids are significantly reduced in KO mice. 
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A) Immunofluorescence staining of testis sections from adult TAp73KO and WT mice (10 weeks old). 
Antibodies against VASA (spermatocytes and round spermatids) and APG1 (spermatids and 
spermatozoa) were applied. TAp73KO mice reveal a decrease of developing sperm cells, including 
round and elongated spermatids. Magnification: 400x 
B) DAPI staining of testis sections from adult p73KO and WT mice. Numbers of round (arrow) and 
elongated spermatids (dashed arrow) are highly reduced in p73KO mice. * = pachytene spermatocyte; 
Magnification: 630x 
C) Quantitation of total sperm cell number per tubule comparing p73KO and WT mice. p73KO mice 
display 20-30% reduction of sperm cells within the seminiferous epithelium. n=4-5 mice were analyzed 
per genotype. Error bars represent the SDM. *** = p < 0.005 (Student´s t-test).  
D) Quantitation of tubule distribution in p73KO versus WT/Heterozygous (Het) mice. p73KO mice show a 
significantly higher number of tubules with low sperm amount. n=5 mice were analyzed per genotype. 
Error bars represent the SDM. *** = p < 0.005; n.s. = not significant (Student´s t-test).  

Fig. 5.4 Testes of TAp73KO mice show reduced numbers of developing sperm cells, 
especially round and elongated spermatids. 

WT 

TA/p73KO 

GCNA1 

10 weeks 

n.s. 

A 

B 

Fig. 5.5: Number of spermatogonia in KO mice is unchanged 
 
A) Immunohistochemistry staining of testis sections from adult TAp73KO and WT mice. Antibody used 
is directed against GCNA1 (spermatogonia). TA and p73KO mice show no difference in staining of 
basal spermatogonia. Magnification: 400x 
B) Quantitation of basal spermatogonia in p73KO versus WT and Het mice, 6 weeks of age. Number 
of GCNA1 positive cells within a distance of 120µm was determined. No significant difference in cell 
number could be detected. n=3-5 mice were analyzed per genotype. Error bars represent the SDM.  
p > 0.05; n.s. = not significant (Student´s t-test).  
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5.2 Basal proliferation, meiosis and hormonal regulation are not 

affected in p73KO and TAp73KO testis 

5.2.1 Basal spermatogonia of p73KO mice retain mitotic ability 

To enable constant production of meiotic sperm cells, a certain pool of basal spermatogonia 

has to go through asymmetric mitotic divisions. This process ensures creation of two types of 

spermatogonia. Type A spermatogonia will stay in the proliferation status, intermediate 

spermatogonia will differentiate into type B spermatogonia, which will progress into meiosis to 

produce haploid sperm cells (Borg et al., 2010, Hermo et al., 2010). We therefore wanted to 

check whether the decrease of post-meiotic sperm cells in p73KO testis could be due to 

spermatogonia, losing their ability to proliferate. To gain information about the amount of 

mitotic cells within p73KO testis we applied IHC to testis sections, using the proliferation 

marker Ki67 (Gerdes et al., 1984). Comparing KO with WT mice, we could not find any 

differences in the proliferation ability of basal cells (Figure 5.6 A). Quantitation of Ki67 

positive tubules per testis section did show comparable levels of proliferating tubules for 

p73KO, heterozygous (Het) and WT mice. This observation was independent of age (Figure 

5.6 C). The loss of sperm cells within the seminiferous epithelium of p73KO mice cannot be 

explained by a reduction or loss of the basal mitotic rate. 

5.2.2 The meiotic rate is not changed in p73KO testis 

Haploid sperm cells derive from diploid spermatogonia by going through meiosis. To 

permanently produce mature sperm cells for reproduction, constantly a number of basal 

spermatogonia have to pass through two meiotic divisions (Borg et al., 2010, Hermo et al., 

2010). Loss of sperm cells in p73KO mice could be a result of a decreased meiotic rate within 

the seminiferous epithelium. To test this hypothesis, testis sections of p73KO and WT mice 

were stained for phosphorylated Histone 3 (H3-phosphoSer10) performing IF. H3 is only 

phosphorylated at Serine 10 during chromosome condensation, which occurs during mitosis 

as well as meiosis (Hendzel et al., 1997, Wei et al., 1999). H3Ser10 positive cells within the 

seminiferous epithelium, excluding basal mitotic cells (also refer to 5.2.1), can therefore be 

counted as meiotic spermatocytes. Comparing p73KO and WT mice we could observe no 

difference in H3Ser10 staining pattern of positively stained tubules (Figure 5.6 B). 

Quantitation of H3Ser10 positive cells per testis section revealed comparable numbers for 

p73KO, Het and WT mice, independent of age (Figure 5.6 D). Therefore the meiotic rate 

seems to be normal in p73KO testis.    
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5.2.3 No impairment of the hormonal axis of p73 and TAp73KO mice  

Germ cell development is tightly regulated by a complex hierarchic hormone system. 

Gonadotropin releasing hormone (GnRH) is produced in the hypothalamic neurons and its 

secretion will activate the release of follicle-stimulating hormone (FSH) and luteinizing 

hormone (LH) from the pituitary gland. Both gonadotropins will travel through the blood 

stream and stimulate testicular cells (also refer to 2.1.4). FSH is influencing spermatogenesis 

by activating Sertoli cells, while LH is binding to its receptor on intertubular Leydig cells, 

which will subsequently produce testosterone. Testosterone itself is also important for 

activation of spermatogenesis (Borg et al., 2010). As already described, p73KO mice are 

known to show severe neural defects in the brain (refer to 2.2.3). To exclude a secondary 

effect for the observed testicular phenotype by deregulation of the hormonal axis starting in 

the brain, we wanted to measure mRNA expression and serum levels of these hormones. 

Quantitation of the expression levels of GnRH mRNA, isolated from brain, by performing 

qPCR revealed no difference for WT and p73KO mice (Figure 5.7 A). The same was true for 

FSH and LH mRNA, isolated from the pituitary gland of TAp73KO, Het and WT mice (Figure 

5.7 B). To affirm physiological levels of the secreted hormones in KO mice, serum levels of 

FSH and LH were determined by antigen-specific ELISA assays. Results for FSH as well as 

LH showed comparable levels of both hormones in the blood stream of TAp73KO and WT 

mice (Figure 5.7 C and D). Additionally, serum testosterone levels of p73KO, TAp73KO and 

WT mice were determined by ELISA. Independent of the genotype the measurements 

displayed high variance for the data points of each group, but a similar distribution comparing 

WT and KO mice. No significant difference in testosterone levels could be observed (Figure 

Fig. 5.6 Loss of sperm cells in KO mice is not a result of decreased proliferation or 
impaired meiosis. 
 
A) Immunohistochemistry staining of testis sections from adult p73KO and WT mice. Antibody against 
Ki67 (mitotic cells) was applied to sections. Basal proliferation is also observed in p73KO mice. 
Magnification: 400x 
B) Immunofluorescence staining of testis sections from adult p73KO and WT mice. Antibody directed 
against phosphorylated H3 (mitotic and meiotic cells) was applied to sections. Meiosis is not impaired 
in p73KO mice. Magnification: 400x 
C) Quantitation of proliferating cells in p73KO versus WT and Het mice of different age. No significant 
difference in number of Ki67 positive tubules could be detected. n=2-5 mice were analyzed per 
genotype and age. Error bars represent the SDM. p > 0.05; n.s. = not significant (Student´s t-test). 
Conducted with Sona Pirkuliyeva. 
D) Quantitation of meiotic cells in p73KO versus WT and Het mice of different age. No significant 
difference in number of H3Ser10 positive cells could be detected. n=2-5 mice were analyzed per 
genotype and age. Error bars represent the SDM. p > 0.05; n.s. = not significant (Student´s t-test). 
Conducted with Sona Pirkuliyeva. 
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5.7 E and F). In sum, the described hormonal axis important for germ cell development 

seems to function normally in p73 and TAp73KO mice.  

A B 

C D 

E F 

Fig. 5.7 The hormonal axis is not affected in p73 and TAp73KO mice. 
 
A+B) Quantitation of mRNA isolated from brain (GnRH, n=3) or pituitary gland (FSH and LH, n=5-
10) of adult KO and WT mice, performing qPCR. Expression levels of all three hormones are 
physiologically normal in p73 and TAp73KO mice. GOI = gene of interest 
C+D) Measurement of LH and FSH levels applying ELISA assay. n=4-5 adult mice were analyzed 
per genotype. In KO mice serum levels of both hormones are comparable to WT.  
E+F) Measurement of testosterone levels via ELISA assay. No change in testosterone serum 
levels can be observed for adult p73WT/Het and TAp73 KO mice. The indicated numbers of mice 
were analyzed per genotype.  To all quantitations the student´s t-test was applied. p > 0.05 
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5.3 Premature sloughing of sperm cells and detachment from the 

Sertoli-sperm cell cluster 

5.3.1 Mature sperm cells are depleted from p73KO and TAp73KO epididymis 

whereas immature sperm cells are present  

Sperm cells have to go through many differentiation and maturation steps before they are 

released from the seminiferous epithelium into the lumen of the tubule, which is called the 

spermiation process. Subsequently, sperm cells travel from the rete testis into the efferent 

ducts that lead to the epididymis. They travel through its caput and corpus, thereby 

undergoing further epididymal maturation steps. The cauda of the epididymis mainly 

functions as storage for the mature spermatozoa before they are released in the ejaculation 

process via the vas deferens (Borg et al., 2010). Since TAp73KO mice show a strongly 

reduced number of sperm cells in the testis, we asked whether mature sperm cells would still 

be present in the cauda epididymidis. Therefore, we applied H&E staining to epididymal 

sections of TAp73KO and WT mice. Looking at the storage region of the epididymis, the 

cauda epididymidis, we found empty tubules or little amount of spermatozoa in 50% of all 

analyzed KO mice (Figure 5.8 A and Table 5.3).  

 

 

 

 

 

 

 

WT mice always displayed tubules full of mature spermatozoa within this region (Figure 5.8 

A). IF staining for APG1, a marker for mature sperm cells (also refer to 5.1.3), confirmed the 

reduced amount of spermatozoa in the lumen of TAp73KO epididymis (Figure 5.8 B and 

Table 5.3). Additionally, a higher amount of immature sperm cells could be observed in the 

epididymis of KO mice. Immature spermatocytes and round spermatids can be visualized by 

IF staining using the antibody directed against VASA (Figure 5.8 B, also refer to 5.1.3). 

Table 5.3: Summary of stainings applied to p73KO and TAp73KO testis and 
epididymis of adult mice. 
 
Various observations can be made throughout p73KO and TAp73KO mice: Around 50% of all 
analyzed KO mice show an increase of apoptotic cells in lumina of testis and epididymis (TUNEL 
positivity). Additionally, in nearly 50% of the KO mice the number of mature sperm is decreased (H&E, 
APG1) and immature cells are increased (VASA) within the epididymis.  
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Quantitation of the described IF staining revealed abnormal distribution of mature (APG1) 

and immature (VASA) sperm cells in around 50% of the analyzed KO mice (Table 5.3). 

These two observations were made in parallel or individually.  

WT 

TAp73KO 

APG1 

WT 

TAp73KO 

TUNEL VASA 

A 

B 

Fig. 5.8 Epididymes of TAp73KO mice display reduced numbers of mature sperm 
as well as increased numbers of apoptotic and immature sperm. 
 

A) Longitudinal sections of the epididymis. Caudal part of adult TAp73KO and WT littermates is 
shown. H&E staining.  50% of adult TAp73KO mice show reduced numbers or no sperm cells within 
the lumina of the epididymis. Magnification: 400x 
B) Immunofluorescence staining of the cauda epididymidis. TUNEL staining and antibodies against 
VASA (spermatocytes and round spermatids) and APG1 (spermatids and spermatozoa) were 
applied to longitudinal sections. TAp73KO mice reveal loss of sperm cells visualized by increased 
apoptosis and decreased staining for mature sperm. Additionally, increased numbers of immature 
sperm are observed in TAp73KO epididymis. Magnification: 400x 

10 weeks 
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Finally, we used an immunofluorescence TUNEL assay on testicular and epididymal sections 

to check for apoptotic cells (Figure 5.8 B). 50% of the analyzed tissue of p73KO and 

TAp73KO mice showed increased apoptosis in the lumen of the tubules (Table 5.3). These 

results indicate that sperm cells are prematurely released from the seminiferous epithelium of 

the testis. Therefore, they cannot survive and die by apoptosis. This subsequently seems to 

result in a loss of mature spermatozoa from the epididymis of TAp73KO mice.  

5.3.2 Sertoli cell number is unchanged in p73KO and TAp73KO testis 

Besides the different developmental stages of germ cells the Sertoli cells are also part of the 

seminiferous epithelium in the testis. Since we observed a disorganized structure of the 

tubule layers as well as a strong sperm cell loss in testis and epididymis we asked whether 

the loss or reduction of Sertoli cells could be the reason for this phenotype. Sertoli cells hold 

an important role during sperm cell development, functioning as supporter, nutrition provider 

and protector of the sperm cells (Griswold, 1998). To gain information about the number of 

Sertoli cells in p73KO and TAp73KO mice compared to WT, we applied IF staining to testis 

sections. The transcription factor Wilms tumor protein 1 (WT1) is known to be a nuclear 

marker for Sertoli cells (Gao et al., 2006, Rao et al., 2006, Sharpe et al., 2003). Using a WT1-

specific antibody we could not observe any difference in the staining pattern when we looked 

at KO and WT testis. Sertoli cell nuclei were found at the basal site of the tubules and 

followed each other in a similar regular distance (Figure 5.9 A). Quantitation of WT1 positive 

cells per unit length with help of the Axio Vision Software showed comparable numbers of 

Sertoli cells for 6 to 7 weeks old KO, Het and WT mice. 10 weeks old p73KO mice displayed 

slightly decreased numbers of WT1 positive cells (Figure 5.9 B). In contrast to strongly 

reduced numbers of sperm cells, the Sertoli cell amount in testis does not seem to be 

reduced in p73KO and TAp73KO mice.  

5.3.3 Sertoli cell morphology of TAp73KO mice is impaired 

When we were looking at Sertoli cell numbers we did not find a striking difference in KO testis 

compared to WT. Since the structure of Sertoli cells is very important to enable positioning 

and movement of sperm cells from basal to apical through the different layers of 

development, we additionally wanted to check for Sertoli cell morphology. For this approach 

we carried out IHC staining on testis sections.  
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Using an antibody against the intermediate filament Vimentin, we could visualize the long 

arms of Sertoli cells reaching through all layers of the seminiferous epithelium and building 

pockets for the sperm cells to sit in (Aumuller et al., 1988, Paranko et al., 1986). Comparing 

IHC staining of TAp73KO and WT mice, we found shortened Sertoli cell arms accompanied 

by a thin and disorganized structure in the KO tubules (Figure 5.10 A). When we quantified 

WT 

TAp73KO 

WT1 merge DAPI 

* 

n.s. 

n.s. 

8 weeks 

A 

B 

Fig. 5.9 TAp73KO mice display no change in Sertoli cell numbers. 
 
A) Immunofluorescence staining of testis sections from adult TAp73KO and WT mice. The 
antibody used is directed against WT1 (nuclear Sertoli marker). Number of Sertoli cells is not 
changed in KO mice. Magnification: 400x 
B) Quantitation of WT1 positive cells (=Sertoli cells) in p73KO versus WT and Het mice of 
different age. No significant difference in Sertoli cell number could be detected. n=2-5 mice 
were analyzed per genotype. Error bars represent the SDM. p > 0.05; n.s. = not significant; * = 
p < 0.05 (Student´s t-test). Conducted with Sona Pirkuliyeva. 
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the total length of Vimentin-stained Sertoli cytoskeleton per area, using the Axio Vision 

Software, a highly significant reduction could be shown for TAp73KO mice (Figure 5.10 B). 

For analysis of Vimentin quantitation refer to 4.1.7.6.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

WT 

TAp73KO 

Vimentin 

10 weeks 

*** 

A 

B 

Fig. 5.10 Sertoli cell morphology is impaired in TAp73KO mice. 
 
A) Immunohistochemistry staining of testis sections from adult TAp73KO and WT mice. The 
antibody used is directed against Vimentin (intermediate filament, Sertoli marker). Sertoli 
cells display shortened cytoplasmic arms within the seminiferous epithelium. Magnification: 
400x 
B) Quantitation of Sertoli cell arms in adult TAp73KO versus WT mice. All cytoplasmic arms, 
reaching from the basal layer towards the tubular lumen, were measured in length within one 
view. The sum of all measurements per area was taken and determined as the “total length” 
of Vimentin Sertoli cell arms. Length of Sertoli cell arms reaching from the basal layer 
through the seminiferous epithelium is significantly decreased in TAp73KO mice. n=3 mice 
were analyzed per genotype. Error bars represent the SDM. *** = p < 0.005 (Student´s t-
test).  
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 Fig. 5.11 Sperm cells are not retained properly by KO Sertoli cells 
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To analyze the germ epithelium and Sertoli cell structure in more detail we fixed testis 

samples in 2.5% glutaraldehyde, stained them in 1% osmiumtetroxide and 1% uranyl acetate 

and embedded the samples in Agar 100 for electron microscopy. Ultrathin sections of tubules 

confirmed the reduction of developing germ cells in TAp73KO testis (Figure 5.11 A). Electron 

microscopy furthermore showed nicely packed layers of spermatocytes and spermatids in 

WT sections, while the seminiferous epithelium of KO mice displayed a loose structure and 

sperm cells seemed to float away from the cell compound. Closed cell-cell attachments were 

often missing in KO tubules and the seminiferous epithelium exhibited many cavities. 

Elongated spermatids were already found close to the basement membrane, not in the upper 

layers of the germ epithelium (Figure 5.11 A). Sertoli cells wrap their cytoplasmic arms tightly 

around sperm cells in WT testis. When we looked at KO Sertoli cells we found thin arms that 

seemed degenerated and could not hold sperm cells anymore. The contact between Sertoli 

and sperm cell was loosened and often displayed big gaps. Additionally, KO Sertoli cells 

showed increased vacuolisation (Figure 5.11 B). The change in morphology of Sertoli cells 

points towards a defect in their functions important for sperm attachment and development.  

5.4 Adhesion- and migration-related genes are upregulated in 

TAp73KO mice, thereby interfering with Sertoli-sperm cell 

interaction 

5.4.1 TAp73 functions as transcriptional inhibitor in the male germ line 

To gain more insight in the molecular regulation of germ cell development by the transcription 

factor TAp73 we performed a whole transcriptome microarray. TAp73KO and WT testes (n = 

3) from 10 weeks old mice were prepped out, RNA was isolated and 6 samples were 

objected to microarray analysis in the transcriptome analysis lab (TAL) of the university of 

Göttingen. For quantitation of the obtained data a threshold of 2 times regulation was set. 

Surprisingly, 148 out of 160 regulated genes showed an upregulation upon KO of TAp73. 

The heatmap of the top 50 genes deregulated in TAp73KO mice features this distribution. A 

positive value of the Z-Score mirrors a high expression rate of the analyzed gene (green 

colour code), a negative value a low expression rate (blue colour code) (Figure 5.12). If the 

loss of TAp73 leads to an upregulation of gene expression in testis, it can be stated that 

TAp73 must in some way act as transcriptional inhibitor within this tissue.  
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Heatmap Top 50 TAp73KO  vs. WT 

 KO-1 KO-2 KO-3 WT-1 WT-2 WT-3 

Fig. 5.12 TAp73 exhibits inhibitory functions within the male germ line. 
 
Microarray analysis was performed on 10 weeks old TAp73KO mice, comparing their testicular mRNA pool 
with WT littermates. n=3 mice were analyzed per genotype. The heatmap features the top 50 regulated 
genes in TAp73KO mice. By applying a threshold of 2 times induction/repression, 160 genes were found to 
be regulated in TAp73KO mice. 92% of these genes were upregulated indicating a repressor function for 
TAp73 in the male germ line. Highlighted genes in red are associated with adhesion and migration. 
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5.4.2 TAp73KO leads to upregulation of proteinase inhibitors and adhesion-

related molecules in the testis 

When we looked more closely at the genes regulated in TAp73KO testis, we found several 

genes strongly related to adhesion and migration. The first hit with the strongest induction in 

the microarray, tissue inhibitor of metalloproteinases (Timp1), is described to be expressed in 

testis and plays a role during sperm migration in the seminiferous epithelium (Guyot et al., 

2003, Le Magueresse-Battistoni, 2007, Siu et al., 2003). Interestingly a big group of genes 

upregulated in TAp73KO testis harbour proteinase or peptidase inhibitor function like Timp1 

does. Several genes of the Serpin family (serine peptidase inhibitors) as well as the 

extracellular proteinase inhibitor Expi were found to be induced in KO mice (Table 5.4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Besides Timp1, Serpins are also discussed to enable migration of developing germ cells from 

the basement membrane to the apical luminal part of the tubules (Le Magueresse-Battistoni, 

Table 5.4: Adhesion- and migration-associated genes are deregulated in TAp73KO 
testis. 
 
Several genes associated with adhesion and migration are strongly upregulated in TAp73KO testis. 
Many of the regulated proteins have proteinase inhibitory function, some possess peptidase activity 
and others are part of intercellular junctions. The table includes the name of the upregulated gene, as 
well as its NCBI gene and Uniprot number. Induction is depicted as log2, since the threshold is set at 
2. Therefore a positive number indicates upregulation in TAp73KO mice, as compared to WT mice. 

The fold induction can be calculated by 2
x

. 
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2007). Additionally, some peptidases regulated by this kind of peptidase inhibitors, like the 

matrix metallopeptidases Adam23 and Mmp23, were deregulated (Table 5.4).  

With focus on the strongly upregulated proteinase inhibitors Timp1 and Serpina3n we next 

wanted to validate the obtained microarray results and compare upregulation of these genes 

in p73KO, TAp73KO and WT mice of different age. To quantify mRNA expression we carried 

out qPCR analysis on testicular RNA, using gene specific primers for Timp1 and Serpina3n. 

Looking at different stages the variance of Timp1 expression within one group was very high, 

but all KO mice showed stronger expression compared to WT levels (Figure 5.13 A). 
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Induction was independent of age with 8 weeks old TAp73KO mice having slightly lower 

expression levels compared to 10 weeks and 4.5 months old mice. Timp1 was upregulated in 

total p73KO mice as well as TAp73 isoform-specific KO mice (Figure 5.13 A). Taking all 

analyzed mice together, Timp1 expression was 10-60 times higher in KO testis and was 

therefore significantly increased compared to WT mice (Figure 5.13 C). Similar results could 

be obtained for the peptidase inhibitor Serpina3n. Expression levels were significantly 

increased and around 10 times higher in KO testes (Figure 5.13 C). Induction was largely 

independent of age, with slightly higher Serpina3n expression levels in 4.5 months old 

TAp73KO mice. Again, upregulation of the peptidase inhibitor could be shown for total p73KO 

as well as TAp73 isoform-specific KO mice (Figure 5.13 B).  

Fig. 5.13 The tissue inhibitor of metalloproteinases Timp1 and the serine peptidase 
inhibitor Serpina3n are strongly upregulated in p73KO and TAp73KO testis. 
 
A+B) Quantitation of Timp1 (A) and Serpina3n (B) mRNA isolated from p73KO, TAp73KO and 
WT/Het testis, performing qPCR. Testes from adult mice objected to microarray analysis as well as 
testes from mice of different age were analyzed. Timp1 (A) as well as Serpina3n (B) are highly 
upregulated in all populations of adult p73KO and TAp73KO mice independent of age. n=3-6 mice 
were analyzed per genotype and age.  
C) Summary of Timp1 (A) and Serpina3n (B) expression in adult mice: Expression of both genes is 
significantly higher in KO testes compared to WT/Het littermates. n=16-22 mice were analyzed per 
genotype. Error bars represent the SDM. *** = p < 0.005 (Student´s t-test). Conducted with Kristina 
Gamper. 

Fig. 5.14 Adhesion- and migration related genes are upregulated in TAp73KO mice. 
 
Quantitation of mRNA isolated from adult TAp73KO and WT testis, performing qPCR. Adhesion- and 
migration-associated genes like the serine peptidase inhibitors Serping1 and Serpin6b, the 
metallopeptidase Adam23, the integrins Itga5 and Itgax as well as the Tnf-receptor Tnfrsf12a are 
significantly upregulated in adult TAp73KO mice. n=3 mice were analyzed per genotype. Error bars 
represent the SDM. * = p < 0.05 and *** = p < 0.005 (Student´s t-test).  

*** 

* 
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We next wanted to validate further proteinase inhibitors upregulated in the microarray as well 

as additional adhesion-related genes (Table 5.4). Quantitation of mRNA expression levels in 

testis was gained by performing qPCR with gene specific primers. In contrast to Serpina3n, 

the peptidase inhibitors Serping1 and Serpin6b were only induced 2 times in TAp73KO mice, 

but this induction was significant (Figure 5.14). Upregulation in TAp73KO testis could also be 

validated for mRNA of matrix metallopeptidase Adam23, the integrins Itga5 and Itgax and the 

tumor necrosis factor receptor Tnfrsf12a. The induction of these genes in TAp73KO mice was 

highly significant (Figure 5.14). 

WT 

TAp73KO 

Timp1 

*** 

8-10 weeks 

A 

B 

Fig. 5.15 Adhesion- and migration related genes are upregulated in TAp73KO mice. 
 
A) Immunofluorescence staining of testis sections from adult TAp73KO and WT mice. Protein levels of 
Timp1 were detected by usage of an antigen-specific antibody. Timp1 is found in the cytoplasm of all 
cells of the seminiferous epithelium as well as extracellular. TAp73KO mice show high expression 
levels for Timp1 in the testis. Magnification: 400x 
B) Quantitation of Timp1 staining (A) in TAp73KO versus WT mice. The mean gray value shows a 
significant higher expression for Timp1 in testicular TAp73KO sections. n=5-7 mice were analyzed per 
genotype. Error bars represent the SDM. *** = p < 0.005 (Student´s t-test).  
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To additionally analyze the protein expression levels of the strongly induced candidate 

Timp1, we performed IF staining on testis sections. To detect Timp1 an antigen-specific 

antibody was applied to TAp73KO and WT samples. Protein levels of Timp1 were very low in 

WT testis and only a faint staining was visible. Hormone producing Leydig cells were stained 

non-specifically. In TAp73KO testis, we found a strong staining for Timp1. The 

metalloproteinase inhibitor was located to the cytoplasm throughout all layers of the 

seminiferous epithelium. It was also found extracellular and in the lumen of the tubules 

(Figure 5.15 A). For quantitation of Timp1 protein expression we calculated the mean gray 

value of the stained area using Adobe Photoshop CS5. 3 to 5 photos per mouse were taken 

and 5 to 7 mice were analyzed per genotype (also refer to 4.1.7.7). Comparing TAp73KO and 

WT tubules, we found a significantly increased expression of Timp1 in the seminiferous 

epithelium of KO mice (Figure 5.15 B). 

Peptidase inhibitors like Timp1 and the Serpin family are strongly upregulated in TAp73KO 

mice. In parallel also peptidases themselves as well as other adhesion associated molecules 

are induced. TAp73 therefore seems to influence adhesion and migration processes within 

the testis. It might be important for sperm adhesion and be part of the sperm cell migration 

through the seminiferous epithelium.  

5.4.3 The structure of the apical ectoplasmic specialization (ES) is impaired in 

TAp73KO mice 

Since we found that regulation of adhesion and migration seemed to be affected on mRNA 

level in TAp73KO testis, we wondered whether this might have an impact on cell-cell 

adhesion on histologic level. Spermatids on the apical site of the seminiferous epithelium are 

attached to Sertoli cells by the apical ectoplasmic spezialisation (ES), an adherens junction-

like structure (Mruk et al., 2004, Lee et al., 2004b) (also refer to 2.1.3.3). It can be visualized 

by staining for the ES-specific protein Espin, which is an important microfilament binding 

protein within these junctions (Bartles et al., 1996). We performed IF staining using an 

antigen-specific antibody against Espin, comparing TAp73KO testis sections with WT. 

Looking at WT sections we found a strong staining of Espin at the luminal site of the tubules. 

The structure of the apical ES displayed an organized pattern of parallel junctions (Figure 

5.16, WT, arrows). When we looked at TAp73KO testis we either found an unstructured 

staining of Espin reaching through all sperm layers or in case of thin tubules only sporadic 

staining of junctions (Figure 5.16, TAp73KO, arrows). These data indicate that loss of 

TAp73KO affects normal adhesion of sperm cells to Sertoli cells. A deregulation of the 
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complex adhesion machinery in the testis might lead to the premature release of sperm cells 

from the seminiferous epithelium.  
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Fig. 5.16 The structure of the apical ectoplasmic specialization (ES) is impaired in 
TAp73KO mice. 
 
Immunofluorescence staining of testis sections from adult TAp73KO and WT mice. The ectoplasmic 
specialization (ES) between Sertoli and germ cells was visualized using an antibody directed 
against Espin. TAp73KO mice show reduced interaction points between the two cell types as well 
as a strongly disorganized structure of the apical ES (white arrows). n=5 mice were analyzed per 
genotype. Magnification: 400x 
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5.5 Adhesion- and migration-related genes are differentially 

expressed in sperm and Sertoli cells, and p73 affects gene 

expression in both cell types 

5.5.1 Timp1 and Serpina3n expression in sperm and primary Sertoli cells  

Analyzing TAp73KO testis, we found an impaired morphology of Sertoli cells as well as 

strongly upregulated expression levels of proteinase inhibitors in whole testis (refer to 5.3.3 

and 5.4.2). We next asked, whether the expression of these proteinase inhibitors could be 

correlated to Sertoli cell morphology and function and whether expression of Timp1 and 

Serpina3n would be restricted to Sertoli or sperm cells only. To get an idea if deregulation of 

Sertoli cells could be the reason for the observed phenotype, we performed primary Sertoli 

cell culture. Whole testes were isolated from adult mice, the tunica albuginea was removed 

and the cell structure was mechanically disrupted. After additional enzymatic digestion and 

washing steps samples were centrifuged. The supernatant contained the germ cell fraction 

enriched for Sertoli cells. Cells of the supernatant were plated on 12 well plates and while 

Sertoli cells were able to attach germ cells underwent apoptosis. A clean Sertoli cell culture 

could be obtained after 3 weeks culturing and further passaging to 6 well plates. IF staining 

using the Sertoli cell marker Vimentin confirmed the pureness of the primary cell culture. No 

difference in morphology of TAp73KO and WT cells could be observed in these in vitro 

experiments (Figure 5.17).  

Fig. 5.17 Primary Sertoli 
cell culture as a model 
system to study mRNA 
expression levels in 
Sertoli cells independent 
from sperm cells. 
 
Light microscopy and 
immunofluorescence (IF) 
staining with Vimentin (Sertoli 
cell marker) of Sertoli cells 
isolated from adult TAp73KO 
and WT mice. Cultured Sertoli 
cells show comparable 
morphology. Magnification: 
100x 

WT 

TAp73 

 KO 

Vimentin 
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The sperm pellet of the cell isolation procedure was stored for later analysis of the sperm cell 

fraction. To quantify mRNA expression levels of Timp1 and Serpina3n comparing primary 

Sertoli cells to the sperm pellet fraction, we carried out qPCR analysis. We found 

physiologically high expression levels of Timp1 in WT Sertoli cells. In contrast to WT sperm 

cells the TAp73KO sperm pellet displayed a high expression rate for Timp1 (as observed for 

whole testis, refer to Figure 5.13 C). But comparing TAp73KO sperm pellet and Sertoli cells, 

Timp1 expression was significantly higher in TAp73KO Sertoli cells (Figure 5.18 A).  

Fig. 5.18 While Timp1 is highly expressed in TAp73KO Sertoli cells, Serpina3n does 
not show cell specific expression. 
 
A-D) Quantitation of mRNA isolated from TAp73KO and WT/Het Sertoli cells in comparison with 
expression levels in the sperm pellet via qPCR. Timp1 (B, n=3-5) as well as Serpina3n (D, n=2-3) are 
upregulated in TAp73KO Sertoli cells, but Serpina3n does not show specificity for the sperm or Sertoli 
cell population (C). Timp1 is significantly stronger expressed in Sertoli than sperm cells (A). Error bars 
represent the SDM. * = p < 0.05 and *** = p < 0.005; n.s. = not significant (Student´s t-test).  
  

* 

* *** 

n.s. 

n.s. 

* 

A B 

C D 



     RESULTS 92 

In comparison to the basal Timp1 expression levels in WT Sertoli cells, Timp1 was 

significantly upregulated in TAp73KO Sertoli cells (Figure 5.18 B). Serpina3n on the other 

hand did not show a cell specific expression pattern, but displayed similar mRNA levels for 

sperm and Sertoli cells (Figure 5.18 C). Like Timp1, it was significantly upregulated in 

TAp73KO Sertoli cells compared to WT (Figure 5.18 D). Under WT conditions Timp1 

expression seems to be restricted to Sertoli cells only. TAp73KO mice show strong 

upregulation of both genes Timp1 and Serpina3n in sperm cells as well as in Sertoli cells. 

The loss of sperm cells in TAp73KO testis is therefore accompanied by a change of gene 

expression of proteinase inhibitors in both cell fractions of the seminiferous epithelium.  

5.5.2 Integrins and metallopeptidases are differentially expressed in sperm and 

Sertoli cells  

With the tool of primary Sertoli cell culture we also wanted to analyze expression levels of 

other adhesion-related genes that we could already validate to be upregulated in whole 

TAp73KO testis (refer to 5.4.2). We applied qPCR analysis to mRNA isolated from Sertoli 

cells from WT and TAp73KO mice comparing this fraction to the sperm cell pellet, using gene 

specific primers for Itga5, Itgax and Adam23. While the Integrins Itga5 and Itgax show a cell-

specific expression pattern (Figure 5.19 A and B), Adam23 is equally expressed in sperm and 

Sertoli cells and also significantly upregulated in TAp73KO Sertoli cells (Figure 5.19 C and 

D). Itga5 is mainly expressed in Sertoli cells of WT and TAp73KO mice (Figure 5.19 A). 

However, the upregulation of Itga5 in TAp73KO testis, as shown in the microarray and the 

validation qPCR of whole testis lysates (refer to 5.4.2), is not related to Sertoli cells but to 

sperm cells (Figure 5.19 A and D). Itgax, on the other hand, is significantly upregulated in 

sperm and Sertoli cells of TAp73KO mice, but mainly expressed in the KO sperm cell fraction 

(Figure 5.19 B and D). Altogether, these results show that deregulation of adhesion- and 

migration-related genes in TAp73KO mice cannot be connected to a specific cell type of the 

testicular tubules. Loss of TAp73 rather affects sperm and Sertoli cells in parallel. If this is 

due to a direct or indirect influence of TAp73 on these cells cannot be stated.  

5.5.3 TAp73 is mainly expressed in sperm cells  

To gain further information, which testicular cell type could be directly affected by TAp73 

action we checked for TAp73 mRNA expression in Sertoli and sperm cells of WT mice. 

Performing qPCR we found TAp73 strongly expressed in the sperm cell fraction. TAp73 

expression in sperm cells was significantly higher compared to its expression in Sertoli cells 
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(Figure 5.20 A). Additionally, we could show that after long time maintenance of Sertoli cells 

in culture, the upregulation of proteinase inhibitors in TAp73KO cells was dropping down to 

WT levels (Figure 5.20 B). At low cell passages (p1-p3) we could still observe the significant 

induction of Timp1 and Serpina3n in TAp73KO Sertoli cells. But when we checked for 

expression levels at higher cell passages (p5-p7), Timp1 and Serpina3n expression went 

down to WT level (Figure 5.20 B). This indicates that TAp73 might directly affect sperm cell 

Fig. 5.19 Differential mRNA expression of adhesion- and migration related target 
genes in TAp73KO Sertoli and sperm cells. 
 
A)-D) Quantitation of mRNA expression of Itga5, Itgax and Adam23 performing qPCR on TAp73KO 
and WT/Het Sertoli as well as sperm cells. While Itga5 (A) is mainly expressed in TAp73KO Sertoli 
cells and Itgax (B) in TAp73KO sperm cells, Adam23 (C) does not show a cell-specific upregulation 
profile for TAp73KO. Itgax and Adam23 are significantly upregulated in Sertoli cells (D). n=2-4 cell 
lines were analyzed per fraction and genotype. Error bars represent the SDM. * = p < 0.05 and *** = 
p < 0.005; n.s. = not significant (Student´s t-test).  
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function and that Sertoli cell function is dependent on the surrounding sperm cells. When 

normal conditions of the tubule structure are changed and sperm cells are depleted from the 

Sertoli cell pool, the gene expression pattern of TAp73KO Sertoli cells is also affected after a 

while.  
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Fig. 5.20 TAp73 is primarily expressed in sperm cells. Upregulation of target 
genes in TAp73KO Sertoli cells is lost after frequent passaging. 
 
A) Quantitation of TAp73 expression performing qPCR on WT Sertoli and sperm cells. TAp73 is 
mainly expressed in the sperm cell fraction. n=6-7 cell lines were analyzed per fraction. Error 
bars represent the SDM. *** = p < 0.005 (Student´s t-test).  
B) Quantitation of mRNA isolated from TAp73KO and Het Sertoli cells of different passages. 
Timp1 and Serpina3n are upregulated in TAp73KO Sertoli cells at low passages (p1-p3). This 
upregulation is lost with frequent passaging (p5-p7). n=3 Sertoli cell lines were analyzed per 
genotype. Error bars represent the SDM. * = p < 0.05; n.s. = not significant (Student´s t-test).  
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5.6 The blood testis barrier is impaired in TAp73KO mice 

5.6.1 TAp73KO testes have unilateral adhesions at basal Sertoli junctions 

TAp73KO testes showed a strong loss of developing sperm cells accompanied by an 

abnormal structure of Sertoli cells, impaired Sertoli-sperm cell adhesion as well as 

upregulation of a group of proteinase inhibitors, proteinases and adhesion molecules. 

Altogether these data point towards an adhesion- and migration-defect of sperm cells in 

TAp73KO testis. During development and entry into meiosis sperm cells have to pass the 

basal junctions between Sertoli cells by a complex migration process. The basal ES and tight 

junctions ensure the separation of the mitotic stem cell compartment from the meiotic sperm 

developing compartment of the seminiferous epithelium (Yan et al., 2007, Cheng et al., 

2011). To check for the morphology of the basal junctions of Sertoli cells we had a look on 

ultrathin sections of glutaraldehyde fixed testis tissue using the electron microscope. When 

we compared TAp73KO with WT sections we found a disorganized structure for the basal 

junctions in TAp73KO mice (Figure 5.21). To build functional tight junctions, actin bundles of 

two adjacent Sertoli cells have to lay directly opposite of each other. This could nicely be 

seen for WT Sertoli cells and the actin bundles of one cell were following each other like 

beads on a string (Figure 5.21, WT, arrows). When we looked at TAp73KO testis we 

frequently found the formation of a one-sided junction, the opposite actin bundles of the 

adjacent cell missing from the basal junctions (Figure 5.21, TAp73KO, dashed arrow). 

Additionally, we often observed big gaps between the neighbouring actin bundles of one cell, 

which also contributed to the disorganized structure of the basal Sertoli tight junctions in 

TAp73KO mice. The basal junctions of TAp73KO testis seem to be impaired and the failure 

of building correct junctions could contribute to the loss of sperm cells during migration and 

development.   

5.6.2 The blood testis barrier of TAp73KO mice is defective  

The sum of the described basal junctions formed between adjacent Sertoli cells, are also 

called the blood testis barrier (BTB). This barrier harbours the important function of protecting 

developing sperm cells from exogenous toxins or endogenous auto antigens. Developing 

sperm cells have a unique protein structure not present in any other tissue of the body. 

Therefore meiotic and spermiogenic sperm cells have to be protected against auto immune 

reactions (Xia et al., 2005b). Electron microscopy already revealed an impaired structure of 

junctions of this barrier (refer to 5.6.1).  
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Fig. 5.21 Failure of Sertoli-Sertoli cell adhesion in TAp73KO mice 
 



     RESULTS 97 

We next wanted to know, if also the function of the BTB could thereby be affected. For this 

approach we carried out an in vivo assay on anaesthetized mice. Testes of adult TAp73KO 

and WT mice were injected with 250µg EZ Link Sulfo-NHS-LC-Biotin, freshly dissolved in 

PBS-CaCl2, and incubated for 30 minutes. Biotin reacts unspecifically with all primary amines 

of surface proteins, like the lysine side-chain or the amino-termini of polypeptides, forming 

permanent amide bonds. Biotin can be visualized by staining testis sections with Streptavidin-

coupled Texas Red.  
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In WT mice, all basal cells below the BTB should be labeled, while the upper sperm cells are 

protected against exogenous Biotin circulating through the blood stream. Besides unspecific 

staining of Leydig cells and the basement membrane only basal cells showed a positive 

staining in WT testis,  indicating a working BTB in these mice (Figure 5.22 A, WT, bracket). In 

sharp contrast to that, many tubules of TAp73KO testis displayed Texas Red staining 

throughout the whole remaining seminiferous epithelium (Figure 5.22 A, TAp73KO). We 

additionally quantified the Texas Red positive area, using Adobe Photoshop CS5 and 

applying a grid of the same size to the germ epithelium of TAp73KO and WT mice (Figure 

5.22 A, sketches). Intensities were measured as mean grey values (also refer to 4.1.7.8). 

Comparing normal sized TAp73KO and WT tubules (high germ epithelium) the increase in 

Texas Red intensity per area in TAp73KO testis was strongly significant. Moreover, the 

intensity of Texas Red staining was increasing furthermore in TAp73KO testis, when the 

seminiferous epithelium was decreasing in height (low germ epithelium) (Figure 5.22 B). The 

observed results imply a defect in the BTB of TAp73KO mice. Disrupted Sertoli junctions fail 

to protect sperm cells against auto antigens or toxins. They might also inhibit proper sperm 

migration to the apical part of the germ epithelium. With proceeding loss of sperm cells, the 

structure of the seminiferous epithelium is loosening its organized shape, and this might lead 

to even further disruption of cell-cell junctions.  

Fig. 5.22 TAp73KO mice reveal a defect of the BTB 
 
A) In vivo Biotin assay was performed on adult TAp73KO and WT mice to measure the 
functionality of the blood testis barrier (BTB). Biotin-infiltrated tissue was visualized by Texas Red 
staining. WT mice only show staining of the basal layers (small bracket), because the BTB 
hinders the Biotin from crossing to the meiotic sperm layers. TAp73KO mice display staining of 
all cell layers (brackets), which implies a defect of the BTB. Magnification: 400x 
B) Quantitation of Texas Red staining (A) in TAp73KO versus WT testis. Measurement was 
performed within the determined area of the same size (images of right column in A)). The mean 
gray values show a significant stronger staining for the KO sections. Thereby the intensity is 
increasing parallel to the decrease of the germ epithelium size (brackets in A). n=4-5 mice were 
analyzed per genotype. Error bars represent the SDM. *** = p < 0.005 (Student´s t-test).  
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6 DISCUSSION  

The process of producing viable, genetically stable sperm cells requires many steps, factors 

and control mechanisms. In comparison with somatic cells, it is even more crucial to maintain 

DNA integrity of germ cells, since mutations or the depletion of genes can lead to 

degenerated offspring or embryonic lethality. Furthermore, abnormal morphology and motility 

or impaired development of the sperm cells can decrease their number and fertilizing ability. 

This can subsequently lead to infertility. The male germ line produces millions of sperm cells 

per day, ready for fertilization. Spermatogenesis therefore has to be controlled tightly to 

ensure genomic stability and fertilizing ability of released mature spermatozoa.  

The original function of the p53 family during evolution is thought to be the protection of the 

germ line and the genomic integrity of gametes (Hu et al., 2011). While the focus of the 

research lay on the female germ line, the function of p73 in the male germ line still needed to 

be evaluated. In this study we intensively analyzed the role of p73 in the testis, using mouse 

models. Since the discovery of the different p53 family members, different mouse models for 

each member and also for some isoforms have been created. By examining these protein 

specific KO mice, the function of the p53 family members in different organ systems and 

tumor development could be unraveled (Donehower et al., 1992, Mills et al., 1999, Suh et al., 

2006, Tissir et al., 2009, Tomasini et al., 2008, Yang et al., 1999, Yang et al., 2000). 

Therefore, our approach was to gain information about the testis morphology of total as well 

as isoform-specific p73KO mice. In accordance with Yang et al. we found normal testis 

development for pre-pubertal p73KO mice, still undergoing the first wave of spermatogenesis 

(Yang et al., 2000). However, p73 was indispensable for adult spermatogenesis, since 

p73KO mice showed a massive loss of developing sperm cells. Establishing an organized 

composition of the seminiferous epithelium and a healthy normal pool of spermatocytes and 

spermatids was dependent on p73. Testis development was specifically dependent on 

TAp73, but not ΔNp73, TAp73KO mice resembling the phenotype of total p73KO mice. 

TAp73 was not necessary for maintaining spermatogonial number at the basal site of the 

seminiferous epithelium. p73 was also dispensable for mitosis of basal cells and meiosis of 

developing spermatocytes, as well as for the hormonal balance of the GnRH-FSH/LH-

testosterone axis. However, TAp73 expression in testis was important for retaining still 

developing sperm cells in the seminiferous epithelium and inhibiting premature release and 

loss of immature sperm. This function of TAp73 seems to be obtained by influencing Sertoli 
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cell morphology and function, since Vimentin-stained Sertoli arms were shortened in 

TAp73KO mice and electron microscopy showed thinning of Sertoli cells and increased 

vesicular morphology. On the molecular level, TAp73 negatively regulated a set of genes 

correlated to cell adhesion and migration. Especially the expression of protease inhibitors, 

like Timp1 and Serpina3n, was shown to be inhibited by TAp73 under WT conditions. TAp73 

was shown to be mainly expressed in the sperm fraction and induced expression of protease 

inhibitors in TAp73KO Sertoli cells decreased after long time culture, due to the absence of 

sperm cells. This indicates that TAp73 might directly act on sperm cells, which in turn can 

influence their own as well as the Sertoli cell expression pattern. Deregulation of protease 

inhibitors and adhesion molecules upon loss of TAp73 could be the reason for observed 

Sertoli-Sertoli adhesion defects and the impermeability brake of the BTB in TAp73KO mice. 

The abolishment of the polarity of the seminiferous epithelium and the disruption of the two 

compartments, usually maintained by the BTB, could in turn lead to premature sloughing of 

sperm cells in the absence of TAp73.  

6.1 A new developmental function for TAp73 – protection of 

spermatogenesis and fertility 

Additionally to the protective function of the germ line by p53 family members, we could show 

for the first time that the TA-isoform of p73 is also involved in the physiological development 

of the male germ line of adult mice. Beyond its ability to protect the male germ line against 

genetic instability upon DNA damage, p73 is also necessary for obtaining a normal healthy 

pool of sperm cells during spermatogenesis. p73 was already described to be expressed in 

the male germ line, mainly localizing to spermatogonia and spermatocytes (Hamer et al., 

2001). This is in accordance with our results, which show TAp73 expression in the sperm, 

rather than the Sertoli cell fraction (Figure 5.20, A). Hamer et al. assign a sperm protective 

function to p73. After irradiation or etoposide treatment, p73 interacts with c-Abl, gets 

phosphorylated by c-Abl and removes DNA-damaged sperm in mice and rats to ensure 

genetic stability (Codelia et al., 2010, Hamer et al., 2001). Like p73, p53 and p63 were also 

reported to execute irradiation-induced apoptosis of sperm cells (Figure 6.1). Irradiation of 

p53 and p63KO mice lead to a decreased removal of DNA-damaged sperm cells compared 

to WT (Beumer et al., 1998, Guerquin et al., 2009). While irradiation and apoptotic studies for 

p53 and p63 were performed on KO mice, p73 results were obtained by in vitro cell culture 

experiments as well as analysis of irradiated WT mice. It is therefore difficult to say, whether 

irradiation-induced apoptosis is also dependent on p73 in vivo or if p53 and p63 form the 
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main part in protecting the male germ line against genomic instability. Whether (TA)p73 is 

necessary to protect sperm cells, could be tested by irradiating p73KO, TAp73KO and WT 

mice and comparing the rate of apoptotic sperm cells. It could well be that p73 serves as a 

backup of p53/p63 function, but that its physiologically occurring expression in mammalian 

testis rather serves as developmental regulation of spermatogenesis (Figure 6.1). The 

observed phenotype for p73 and TAp73KO testes, which display a massive loss of 

developing sperm cells, underlines this hypothesis (Figure 5.1, 5.2 and 5.4).  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The function of p53 and p63 in the male germ line compared to p73 can also be distinguished 

by looking at the ability of the corresponding KO mice to produce offspring. While p53 and 

(G)TAp63    TAp73    p53  

Germ cell 
apoptosis 

Protection of genetic stability Protection of fertility 

Spermato 

-genesis   
Meiosis/ 
Spindle 

Ovulation/ 
Implantation 

  

Fig. 6.1 The p53 family protects the germ line 
 
TAp63 and GTAp63 are generally accepted as protector of the female and male 
germ line. Upon DNA damage, as result of irradiation or cisplatin treatment, 
(G)TAp63 gets activated and induces germ cell apoptosis, thereby protecting 
damaged cells from genetic instability (Beyer et al., 2011; Suh et al., 2006). 
p53 and TAp73 are also activated upon irradiation and remove damaged germ 
cells (Beumer et al., 1998; Lee et al., 2008; Hamer et al., 2001). TAp73 is 
thought to serve as back up for TAp63- and p53-mediated apoptosis in testis 
(Hamer et al., 2001).   
Besides their developmental regulation of the female germ line, p53 and TAp73 
are also involved in sperm cell development (Hu et al., 2007; Rotter et al., 1993; 
Tomasini et al., 2008). Furthermore, TAp73KO mice are shown to be subfertile.  

Influence on female germ line 

Influence on male germ line 
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TAp63KO mice (p63 total KO mice cannot be studied, since total p63 ablation is postnatal 

lethal) are fertile under normal conditions, p73 as well as TAp73KO males and females were 

reported to be infertile. The here described phenotype would explain the earlier described 

infertility of TAp73KO males, which do not display abnormalities in mating behavior as p73KO 

mice do (Tomasini et al., 2008). Defects in the pheromone system of p73KO mice, 

accompanied by behavioral changes, do not seem to be the (only) reason for infertility, but 

rather impaired spermatogenesis in adult testis (Yang et al., 2000). 
As mentioned before, the original function of p53 family members is stated to be the 

protection of the germ line against genomic instability (Dotsch et al., 2010). The p53-

homologue Cep-1 in Caenorhabditis elegans is required for activation of apoptosis in 

response to DNA damage, hypoxia and starvation (Derry et al., 2001, Schumacher et al., 

2005, Schumacher et al., 2001). Similarly, the fly p63/p73 hybrid Dmp53 can drive germ cell 

apoptosis upon irradiation in Drosophila melanogaster to ensure genomic stability of the 

offspring (Brodsky et al., 2004). During evolution, this primary role of p53 family members 

seems to be maintained in vertebrates up to mammals. In mice and humans (G)TAp63 can 

be stated as the protector of the male or female germ line, activated upon exogenous-

induced DNA damage, but no important functions during normal development of the germ 

line are described (Beyer et al., 2011, Suh et al., 2006) (Figure 6.1). In contrast, in mice p53 

does not only induce apoptosis upon DNA damage, but also influences meiotic recombination 

during spermatogenesis as well as regulates the implantation process in the female germ line 

(Beumer et al., 1998, Hu et al., 2007, Schwartz et al., 1999). Likewise, p73 is also reported to 

possess developmental function for the female germ line, TAp73KO mice showing ovulation 

defects, spindle abnormalities during oocyte meiosis and multinucleated blastocysts 

(Tomasini et al., 2008) (Figure 6.1). Comparable meiotic defects or morphological 

abnormalities could not be observed for sperm cells of TAp73KO mice. However, TAp73KO 

females as well as males are described to be infertile. It is therefore not surprising that TAp73 

also contributes to the normal development of the testis, its depletion leading to a strong loss 

of developing sperm cells and subsequently to infertility. In contrast to the most ancient family 

member p63, p53 and p73 seem to have developed further functions in regulating the 

maturation of the male and female germ line of adult mammals. Additionally to its 

developmental regulation of the nervous system, immune system and the female germ line, 

our results show that p73 possesses a hitherto unknown critical function in protecting the 

fertility of the male germ line.  
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6.2 TAp73 depletion leads to hypospermatogenesis  

Pre-pubertal p73 and TAp73KO mice show comparable testis morphology as WT mice. At 3 

weeks of age we find normal spermatogenesis in KO animals; spermatogonia, meiotic 

spermatocytes and round spermatids are visible in the tubules (Figure 5.1 A). Like Yang et al. 

we do not find histologic changes in developing mice, still undergoing the first wave of 

spermatogenesis (Yang et al., 2000; data not shown). We can therefore exclude a prenatal 

developmental defect as well as a defect in undergoing spermatogenesis per se. Only with 

adulthood, when the cycle of spermatogenesis in the seminiferous epithelium is established, 

testes of p73 as well as TAp73KO mice display a visible reduction in developing sperm cells 

(Figure 5.1 B and 5.2 A). Analysis of the different sperm stages shows that all stages up to 

the elongated spermatids are present, since VASA and APG1 staining reveal positive cells in 

KO testes (Figure 5.4 A). However, the layers of late meiotic and spermiogenic cells are 

strongly reduced (Figure 5.4). Since all developmental stages of sperm cells seem to be 

present, p73 loss is not causing a germ cell arrest phenotype. An applicable classification for 

the phenotype of p73 as well as TAp73KO mice is the hypospermatogenesis phenotype (also 

refer to 2.1.5). This is underlined by the fact that KO mice show normal numbers of 

spermatogonia as well as somatic Sertoli cells (Figure 5.5 and 5.9). Additionally, you can find 

tubules unchanged in morphology in KO testes next to tubules depleted of nearly all sperm 

cells, which is also described to be a feature of hypospermatogenesis. Furthermore, 

TAp73KO males can give rise to offspring, but in reduced frequency and are therefore 

subfertile (around 30% in mating trials, data not shown). This stands in contradiction with the 

literature, where TAp73KO males are stated to be infertile (Tomasini et al., 2008), but fits to 

the testis morphology we observe. The degree of a phenotype can vary, dependent on the 

genetic background of the mouse strain. In contrast to our studies, Tomasini et al., used 

C57BL/6J animals mixed with 129/Sv background. An obvious reduction, but not a complete 

loss, of developing sperm cells is found in our C57BL/6J KO males. However, the few 

remaining sperm cells seem to be normal in shape and can take their chances in producing 

healthy offspring. More precisely, the observed phenotype can be described as 

hypospermatogenic with decreased numbers of developing spermatocytes, spermatids and 

spermatozoa.  

6.3 Premature sloughing of sperm cells as result of TAp73 loss 

The cause for hypospermatogenic testes can be changes in germ cell development, Sertoli 

cell function or germ cell colonization. Defects in germ cell colonization can be excluded 
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since pre-pubertal KO mice do not show abnormal testis morphology and the testis 

morphology, shape and localization as such is not compromised (Figure 5.1 A).  

p53 family members are known to be involved in maintaining stem ness and proliferation 

capacity. ΔNp63 for example is necessary to keep the stem cell pool of keratinocytes in 

squamous epithelia and ΔNp73 is an important survival factor in brain development (Pozniak 

et al., 2002, Senoo et al., 2007, Tissir et al., 2009). Additionally, ΔNp73 and ΔNp63 are both 

shown to be overexpressed in several tumor types, promoting cell survival and proliferation 

(Hibi et al., 2000, Moll et al., 2004, Stiewe et al., 2002a). Furthermore, p73, especially the 

TAp73 isoform, was recently described to ensure adult neurogenesis by promoting long-term 

maintenance of neural stem cells in the brain (Fujitani et al., 2010, Talos et al., 2010). 

However, in testis development TAp73 seems to be dispensable for maintaining proliferation 

capacity of basal cells and ensuring a stable pool of spermatogonia, because (TA)p73KO 

mice show comparable numbers of Ki67 and GCNA1 positive cells as WT mice (Figure 5.5 

and 5.6 A and C). Since we also could show that ΔNp73 is dispensable for normal testis 

development (Figure 5.2 B), p73 isoforms do not appear to influence the testicular stem cell 

pool. If TAp73 does not influence the number of basal proliferating cells, it might be 

necessary for sperm differentiation. In contrast to the function of ΔNp63 on epithelial stem 

ness, the role of TAp63 in skin development is connected to keratinocyte differentiation 

(Candi et al., 2006). TAp73 is involved in neural differentiation; TAp73KO mice display 

reduction in number of hippocampal neurons, TAp73 drives differentiation of cortical neurons 

in vitro and its expression increases during synaptogenesis in the postnatal brain (Agostini et 

al., 2010, Tomasini et al., 2008, Agostini et al., 2011). Endogenous TAp73 levels increase 

during retinoic acid-induced differentiation of neuroblastoma cells as well as myeloid 

leukemic cells (De Laurenzi et al., 2000, Tschan et al., 2000). Likewise, TAp73 might also 

possess differentiating functions during testis development, ensuring production of mature 

sperm cells. In contrast to the female germ line, where depletion of TAp73 leads to spindle 

abnormalities during meiosis, it does not influence the meiotic process of sperm cells 

(Tomasini et al., 2008). The meiotic rate in TAp73KO testes, determined by H3Ser10 

staining, is not changed compared to WT mice (Figure 5.6 B and D). It is important to 

mention that a secondary effect as result of the severe neural phenotype can be largely 

excluded as explanation for the detected sperm cell loss. p73KO mouse models are 

described to show neural loss in the cortex, hippocampus and thalamic eminescence (Tissir 

et al., 2009, Tomasini et al., 2008, Yang et al., 2000). The hypothalamus and therefore GnRH 

expression might also be affected, disturbing the entire GnRH-FSH/LH-testosterone hormone 

axis (also refer to 2.1.4), and thereby causing the defect in sperm development. Analyses of 
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mRNA expression levels of all involved hormones of the brain (GnRH, FSH, LH) as well as 

serum hormone measurement do not reveal differences in (TA)p73KO mice compared to WT 

littermates, suggesting that TAp73 is acting directly on physiologic testis homeostasis (Figure 

5.7).   

Maturating sperm cell numbers are decreased in the seminiferous epithelium of TAp73KO 

testis and in parallel less mature sperm as well as increased apoptotic and immature sperm 

can be found in the lumen of the epididymis (Figure 5.8). This observation points towards a 

retention failure of developing sperm cells in the testis. We also describe that the 

seminiferous epithelium of TAp73KO mice does loose its coordinated structure, since sperm 

cells are usually arranged in specific layers close to each other according to their 

developmental stage, which is called the seminiferous cycle (also refer to 2.1.2) (Figure 5.2 

A, 5.4 B and 5.11 A). The loss of maturating sperm cells is accompanied by a change in 

Sertoli cell morphology, Sertoli cells displaying shortened cytoplasmic arms and increased 

vacuolization (Figure 5.10 and 5.11 B). Taking these observations into account we can 

hypothesize that TAp73KO Sertoli cells fail to provide physical support for developing sperm 

cells, which therefore cannot stay in proper contact with the seminiferous epithelium. This 

might lead to premature detachment of developing sperm from the testicular epithelium. 

Some of the immature sperm cells are flushed to the epididymis, but likely the main part will 

be eliminated by apoptosis. Since Sertoli cells also harbour phagocytic function, this could be 

the reason why the lost sperm cells are not detectable anymore, but appear to “vanish” from 

the testis and epididymis (Chemes, 1986). The increased phagocytic activity of TAp73KO 

Sertoli cells could also explain their change in morphology, which is characterized by 

increased cytoplasmic vacuolization (Figure 5.11 B). The idea that sperm cells might fail to 

stay attached to Sertoli cells and the seminiferous epithelium is furthermore reinforced by the 

fact that the structure of Sertoli sperm junctions at the apical ES is impaired in TAp73KO 

mice (Figure 5.16). Elongating spermatids are attached to Sertoli cells by the apical ES (also 

refer to 2.1.3.3). If they have completed their testicular maturation they will be released from 

the seminiferous epithelium. Restructuring of junctions by Sertoli cells is necessary for 

spermiation and defects in this process would support premature release of sperm cells. 

Premature sloughing of sperm cells is for example described in mice deficient of the enzyme 

α-mannosidase IIx. The carbohydrate N-glycan adhesion molecules, synthesized by this 

enzyme, are lost and therefore Sertoli-sperm adhesion is impaired (Akama et al., 2002). It 

might be possible that TAp73 regulates the homeostasis of adhesion molecules, ensuring 

attachment of sperm to Sertoli cells. However, it cannot be said if abnormal Sertoli cell 
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function is the primary cause of the phenotype or a secondary effect due to abnormal sperm 

development.  

Taken together, TAp73 loss leads to hypospermatogenesis with decreased numbers of 

spermatocytes and spermatids, accompanied by abnormal structure of Sertoli cells. The 

decrease of developing sperm numbers is explained by a retention failure and premature 

sloughing of sperm cells.     

6.4 TAp73 – a transcriptional inhibitor in testis development? 

By performing microarray analysis on whole testis lysates of TAp73KO and WT mice we had 

a closer look at the molecular level of TAp73 action. Surprisingly, loss of TAp73 mainly leads 

to mRNA upregulation of testicular genes, not downregulation (Figure 5.12). With regard to 

gene expression TAp73 seems to possess an inhibitory role in the testis. Similarly, TAp73KO 

ovaries also mainly displayed upregulation of p73 target genes. However, the pool of 

regulated genes was not comparable to induced genes in TAp73KO testes (Tomasini et al., 

2008).  

Downregulation of mRNA levels through TAp73 could be explained by transcriptional 

inhibition of target genes or posttranscriptional regulation of mRNAs. TAp73 isoforms are 

mainly reported to activate target genes upon DNA binding (De Laurenzi et al., 1998, Flores 

et al., 2002, Jost et al., 1997, Lee et al., 1999). However, there are also hints that TAp73 is 

able to inhibit transcription. For example, TAp73β was reported to inhibit MYCN mRNA 

transcription in neuroblastoma cell lines. TAp73α, on the other hand, was able to 

downregulate MYCN mRNA level post-transcriptionally by binding to its mRNA and 

decreasing its stability (Horvilleur et al., 2008). Besides enhancing p53 transcriptional activity 

on p21 and Bax reporter genes in thyroid cancer cell lines, TAp73 also antagonized p53 

binding on the promoter of its negative regulator Mdm2 and inhibited transcriptional activation 

of Mdm2 (Malaguarnera et al., 2008). Another example is the repression of the vascular 

endothelial growth factor (VEGF) promoter in Saos-2 cells by TAp73 (Salimath et al., 2000). 

Furthermore, by overexpressing TAp73 isoforms in a neuroblastoma cell line and primary 

neurons, Notch-CBF-1 dependent transcription could be inhibited in reporter gene assays. 

TAp73 was able to antagonize Notch signaling by binding to Notch itself. The inhibitory ability 

of TAp73 was shown to be dependent on the TA domain as well as on its ability to bind DNA 

(Hooper et al., 2006). TAp73 is able to induce retinoic acid driven neuronal differentiation of 

neuroblastoma cells and it does this by suppressing Notch signaling (De Laurenzi et al., 

2000, Hooper et al., 2006).  
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Therefore, it might be possible that TAp73 is interacting with developmental transcription 

factors in sperm cells, inhibiting their transcription activity on gene promoters. This would 

explain the high number of upregulated genes in TAp73KO mice. Notch signaling is highly 

conserved in evolution and important during many developmental processes, i.e. the 

differentiation of the central nervous system (CNS), where it promotes maintenance of neural 

stem cells and oligodendrocyte differentiation (Bolos et al., 2007). p73 is important for the 

maintenance of neural proliferation capacity, its depletion leading to downregulation of the 

Notch pathway (Talos et al., 2010). Components of the Notch pathway, like Notch receptors 

1-4 and Notch ligands Jagged 1/2, have also been reported to be expressed in sperm and 

Sertoli cells of mice and rats (Dirami et al., 2001, Hayashi et al., 2001, Mori et al., 2003). It 

was stated that Notch 1 is necessary for sperm differentiation and spermatid survival 

(Hayashi et al., 2001). However, the mechanism and regulated target genes in testis remain 

unknown. Interestingly, Notch 1, Jagged 2 and TAp63 expression increase strongly in rat 

testis around day 20 pp, expression levels staying unchanged in adult rats (Hayashi et al., 

2004). Since TAp73KO mice display loss of sperm cells only after 3 weeks of age, it could be 

speculated that TAp73 and Notch activity are connected. With depletion of TAp73 the control 

of Notch transcribed target genes during spermatogenesis would be impaired and activation 

of normally inhibited genes during sperm development could lead to the observed phenotype 

in TAp73KO mice.  

6.5 TAp73 regulates adhesion and migration of sperm in the testis 

TAp73-regulated genes in testis include a group of adhesion proteins and several protease 

inhibitors (Table 5.4; Figure 5.13 and 5.14). The tissue inhibitor of metalloproteinases Timp1 

and the plasminogen activator (PA) inhibitor Serpina3n are highly upregulated in TAp73KO 

mice (Figure 5.13).  

According to their name, Timps are able to inhibit matrix metalloproteinases (MMPs), and are 

implicated in regulating many processes like proliferation, apoptosis, angiogenesis, tumor 

growth and tissue remodelling (Bertaux et al., 1991, Guedez et al., 1998, Johnson et al., 

1994, Mruk et al., 2004). Timp-1 was already described to be expressed in testis, especially 

in Sertoli cells, but also in sperm cells (Mruk et al., 2003, Robinson et al., 2001, Ulisse et al., 

1994). In contrast to the other family members Timp-2 and-3, Timp-1 shows a sex-dimorphic 

expression pattern, primarily located to the male germ line (Guyot et al., 2003) 2003). Timp1 

mRNA expression levels were shown to increase strongly from 40 to 60 days pp in rats. 

Levels remained high in adult Sertoli cells, but decreased in sperm cells (Mruk et al., 2003). 
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Its function during testis development is associated with adhesion and migration. Using in 

vitro primary cell culture systems Timp-1 was shown to increase during tight junction 

assembly in Sertoli cells as well as during adherens junction assembly between Sertoli and 

co-cultured sperm cells (Mruk et al., 2003). Furthermore, Timp-1 was described to be 

necessary for counterbalancing the TNFα-mediated activation of MMP-9 and the subsequent 

cleavage of collagen leading to perturbation of Sertoli tight junctions in culture (Siu et al., 

2003). Timp1 expression in mice was shown to peak during day 20 to 30 pp (Nothnick et al., 

1998). Abnormal high levels of Timp1 in adult TAp73KO mice could therefore lead to an 

imbalance in the junction restructuring processes, supported by MMP and Timp action. Timp1 

protein is strongly secreted in TAp73KO mice and might be an indicator of increased activity 

of MMPs, which support cleavage of tight junctions (Figure 5.15) (Siu et al., 2003). To 

address this possibility, MMP activity could be analyzed performing gelatin-zymography 

assays.  

Serine proteases (plasminogen activators PA) and Serine proteinase inhibitors (PAIs or 

Serpins) are also involved in germ cell development. The original function of the plasminogen 

activators, which catalyze the activation of plasminogen, includes regulation of blood 

coagulation, platelet activation, thrombosis and fibrinolysis. Serpins form covalent, 

irreversible complexes with Serine proteases, inhibiting their proteolytic activity (Dellas et al., 

2005, Le Magueresse-Battistoni, 2007). Various PAs as well as Serpins were found to be 

expressed in Sertoli, Leydig and sperm cells (Odet et al., 2006, Odet et al., 2004). Serine 

protease activity was shown to increase during Sertoli-germ cell adherens junction assembly 

in vitro ((Mruk et al., 1997). Components of the plasminogen activation system are known to 

influence several steps in migration, like cell attachment and detachment, independent of 

plasminogen activation by interacting with adhesion proteins like integrins or vitronectin 

(Dellas et al., 2005, Stefansson et al., 1996). Serpin 1 can disrupt cell adhesion by competing 

with Serine proteases for their receptor, thereby decreasing its affinity for vitronectin (Waltz et 

al., 1997). Serpin 1 furthermore mediates internalization of adhesion receptors, leading to 

detachment of cells. Recycling of these receptors subsequently enables reattachment and 

this detachment-reattachment-cycle allows migration of cells (Czekay et al., 2003). 

Vitronectin as well as Serpin 1 (PAI-1) are expressed in testis, locating to early spermatids 

and Sertoli cells (Le Magueresse-Battistoni et al., 1998). Additionally, mice depleted of the 

nonspecific Serine proteinase inhibitor Serpina5 display sterility due to unopposed proteolytic 

activity of Serine proteases accompanied by detachment of immature sperm and BTB 

impairment (Uhrin et al., 2000). Upregulated Serine proteinase inhibitors in TAp73KO testis 

include Serpina3n, Serpinb6b and Serping1 (Table 5.4; Figure 5.13 and 5.14). Serping1 so 
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far has not been reported to be expressed in testis. Serpinb6b, on the other hand, is known 

to be expressed in sperm cells and Serpina3n in Sertoli cells (Charron et al., 2006, Sipione et 

al., 2006). Regulation of proteinase inhibitors by TAp73 could be important for normal 

adhesion of sperm cells to Sertoli cells and might therefore affect sperm cell migration and 

spermiation. Even if the function of the deregulated Serpins in TAp73KO mice is not known 

so far, their upregulation could be an indicator for imbalanced junction assembly and 

disassembly. Non-physiological induction of Serpins could be the cause for premature 

detachment of sperm cells from the seminiferous epithelium, if for example testicular Serpins 

interact with and inhibit junctional proteins like integrins. On the other hand, Serpin 

upregulation might be a secondary effect due to increased Serine protease activity on 

junctions of TAp73KO mice.  

Deregulation of protease inhibitors, like Timp1 and Serpins, upon TAp73 loss seems to result 

in imbalance of proteolysis and restructuring events on testicular junctions (Figure 6.2). This 

idea is affirmed by the observation that further adhesion- and junction-related molecules, like 

integrinα5, integrinαX and claudin10, are deregulated in TAp73KO testis (Table 5.4; Figure 

5.14). Additionally, TAp73 loss leads to upregulation of Adam23, which harbours a 

metallopeptidase domain and was reported to interact with integrins via its disintegrin 

domain, thereby affecting adhesion (Cal et al., 2000).  

Interestingly, depletion of the retinoblastoma protein Rb in Sertoli cells leads to upregulation 

of similar genes as in TAp73KO testis. 10% of the TAp73-regulated genes overlap with 

deregulated genes of RbKO Sertoli cells, especially Timp1, Serpina3n and Adam23 being 

strongly induced (Nalam et al., 2009). Similar to our observations, Nalam et al. find infertility, 

impaired tissue remodelling, defective Sertoli-germ cell interactions and increased 

permeability of the BTB in Sertoli cell-specific conditional KO mice of Rb. Why loss of Rb 

leads to a comparable phenotype as loss of TAp73, cannot be explained so far.  

The structure of tight junctions at the BTB is impaired in TAp73KO mice, enabling passage of 

exogenous substances like Biotin into the seminiferous epithelium (Figure 5.21 and 5.22). 

This functional defect of the BTB could also be the result of deregulated protease inhibitors 

and adhesion molecules. Sperm cells have to cross the Sertoli-Sertoli junction barrier during 

development and migrate to the apical part of the seminiferous epithelium. During this 

migration process proteases are thought to act like scissors, opening the BTB for migrating 

sperm cells. To enable quick reassembly of junctions after the passage of spermatocytes and 

to preserve homeostasis, proteases have to be deactivated by protease inhibitors. The 

correct interplay between proteases and their inhibitors, resulting in disassembly and 

reassembly of junctions, is called the junction restructuring theory (Mruk et al., 2004). TAp73 
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appears to regulate expression levels of proteinase inhibitors and might thereby ensure 

sperm migration and junction restructuring. Loss of TAp73 seems to impair the balance 

between proteases and inhibitors, resulting in a BTB defect and premature detachment of 

developing sperm cells (Figure 6.2).    
 

 

 

Fig. 6.2 TAp73 balances spermatogenesis 
 
TAp73 is expressed in sperm cells of the testis. Upon loss of TAp73 the balance of protease inhibitors 
(Timps, PAIs) and proteases (MMPs, PAs) is lost. TAp73 depletion leads to upregulation of tissue 
inhibitor of metalloproteinases Timp1, several Serpins and adhesion-related molecules. These play an 
important role in the homeostasis of disassembly and reassembly of the BTB and Sertoli-sperm cell 
junctions during migration of the germ cells. Loss of TAp73 leads to an impaired BTB and junction 
restructuring process, resulting in detachment and premature sloughing of sperm cells from the 
seminiferous epithelium. TAp73 is therefore necessary to maintain normal spermatogenesis and 
fertility.  
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TAp73 is primarily located to sperm cells, but nevertheless gene expression of protease 

inhibitors and adhesion molecules is altered in primary Sertoli cell culture of TAp73KO testis 

(Figure 5.18 and 5.19). By acting on sperm cells TAp73 also seems to influence Sertoli cell 

expression. This could be explained by a crosstalk between sperm and Sertoli cells. 

Upregulation of target genes in KO Sertoli cells is lost during long time culture (Figure 5.20 

B). By disrupting the interaction with sperm cells, cross-signaling is lost in primary Sertoli 

cells and they seem to overcome the influence of TAp73.  

It might be possible that TAp73 is normally inhibiting gene expression in sperm cells, 

including protease inhibitors and adhesion proteins, as well as regulating a so far unknown 

soluble factor. Loss of TAp73 would lead to activation of this signaling molecule, which in turn 

is mediating gene expression in Sertoli cells. Since TGFβ3 and TNFα are involved in 

signaling during junction restructuring, migration and adhesion events, deregulation of these 

cytokines could also influence the expression of the observed target genes (Siu et al., 2003, 

Xia et al., 2005a). Both signaling molecules are described to perturb tight junctions at the 

BTB (Lui et al., 2003b, Lui et al., 2001, Lui et al., 2003a, Siu et al., 2003). In the seminiferous 

epithelium TNFα is mainly expressed in germ cells (De et al., 1993). Our microarray data also 

show an upregulation of the TNF-receptor Tnfrsf 12a, which was reported to be expressed in 

Sertoli cells (Table 5.4 and Figure 5.14) (Johnson et al., 2007). This might resemble an 

increased activation of the TNF signaling pathway in sperm cells upon TAp73 depletion, 

acting on Sertoli cells and subsequently leading to inhibition of junction formation. Germ cells 

seem to signal to Sertoli cells to mediate their own detachment and migration, by inducing 

expression of migration related proteins. This process might be balanced by TAp73 (Figure 

6.2). 

6.6 TAp73 – a new player in spermatogenesis 

During spermatogenesis sperm cells have to pass the BTB, so they can migrate towards the 

lumen of the testicular tubules along the Sertoli cell membrane. This process includes 

constant disassembly and reassembly of Sertoli-Sertoli and Sertoli-sperm junctions. If the 

events of junction restructuring are disrupted, spermatogenic cells fail to orientate and 

migration is impaired. This will lead to premature release of sperm cells from the seminiferous 

epithelium, resulting in infertility. Here, TAp73 is shown to be a new player in adhesion and 

migration processes of the seminiferous epithelium, its depletion leading to strong loss of 

developing sperm cells. With TAp73 a new factor in junction restructuring events is 

described. Especially protease inhibitors, known to be involved in sperm migration, seem to 
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be regulated by TAp73. Loss of TAp73 results in adhesion defects, disruption of the BTB, and 

premature sloughing of sperm cells. Therefore, TAp73 is not only indispensable for the 

female germ line, but also for the male germ line. For the first time an explanation for the 

reported infertility of TAp73KO males is given. However, the detailed molecular mechanisms 

of TAp73-mediated transcriptional inhibition in testis development and sperm migration still 

have to be unraveled.  
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APPENDIX 

List of TAp73-regulated genes in testis – Microarray results: TAp73KO relative to WT 

The table includes the name of the upregulated gene, as well as its NCBI gene number. Induction of 

expression in TAp73KO testis relative to WT is depicted as log2, since the threshold is set at 2. 

Therefore a positive number indicates upregulation in TAp73KO mice, as compared to WT mice.  

The fold induction can be calculated by 2
x

. 

Symbol Description Gene logFC P.Value 

Trp73 transformation related protein 73 22062 5,96 1,56E-05 

Tas1r1 taste receptor, type 1, member 1 110326 -5,58 4,76E-06 

Timp1 tissue inhibitor of metalloproteinase 1 21857 3,82 1,44E-07 

Aqp5 aquaporin 5 11830 3,79 1,57E-03 

Gpnmb glycoprotein (transmembrane) nmb 93695 3,77 1,45E-03 

Gm13969 predicted gene 13969 667481 3,55 1,57E-04 

A_55_P1998737 probe 
 

3,40 7,80E-08 

Scrg1 scrapie responsive gene 1 20284 3,34 8,03E-05 

Mpzl2 myelin protein zero-like 2 14012 3,33 1,30E-05 

Olfr776 olfactory receptor 776 404321 3,30 1,51E-03 

A_66_P139703 probe 
 

3,20 3,92E-05 

Cd83 CD83 antigen 12522 3,18 1,88E-05 

Wnt4 wingless-related MMTV integration site 4 22417 3,18 3,79E-07 

Trp73 transformation related protein 73 22062 3,17 2,72E-07 

Lrg1 leucine-rich alpha-2-glycoprotein 1 76905 3,06 3,15E-04 

Serpina3n serine (or cysteine) peptidase inhibitor, clade A, member 3N 20716 3,01 1,73E-06 

A_55_P2089219 probe 
 

3,00 1,32E-08 

4930486L24Rik RIKEN cDNA 4930486L24 gene 214639 2,89 6,38E-07 

Expi extracellular proteinase inhibitor 14038 2,87 4,13E-04 

Dab1 disabled homolog 1 (Drosophila) 13131 -2,84 2,63E-04 

Robo4 roundabout homolog 4 (Drosophila) 74144 2,77 6,70E-06 

A_51_P472879 probe 
 

2,76 1,10E-06 

Igfbp3 insulin-like growth factor binding protein 3 16009 2,72 1,79E-05 

Ccl9 chemokine (C-C motif) ligand 9 20308 2,67 7,78E-04 

Ccl6 chemokine (C-C motif) ligand 6 20305 2,59 1,63E-04 

Aqp5 aquaporin 5 11830 2,57 2,47E-07 

Tnfrsf12a tumor necrosis factor receptor superfamily, member 12a 27279 2,44 7,02E-06 

Hspb8 heat shock protein 8 80888 2,34 5,39E-07 

Ly6d lymphocyte antigen 6 complex, locus D 17068 2,29 6,92E-06 

Lbh limb-bud and heart 77889 2,26 4,16E-05 

Ttr transthyretin 22139 2,06 9,52E-04 

Atf3 activating transcription factor 3 11910 2,04 4,06E-05 

Mtx3 metaxin 3 382793 -1,93 8,25E-05 

Fst follistatin 14313 1,92 1,95E-04 

Myoz2 myozenin 2 59006 1,92 2,04E-05 
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C3 complement component 3 12266 1,87 1,32E-05 

Itgax integrin alpha X 16411 1,86 1,01E-05 

A_55_P2158577 probe 
 

-1,80 6,90E-05 

Casp4 caspase 4, apoptosis-related cysteine peptidase 12363 1,74 1,26E-03 

Fam65c family with sequence similarity 65, member C 69553 1,72 1,35E-03 

Arl5c ADP-ribosylation factor-like 5C 217151 1,70 1,44E-05 

Gm11428 predicted gene 11428 100034251 1,69 3,86E-05 

A_55_P2142232 probe 
 

1,68 6,69E-06 

Ldhd lactate dehydrogenase D 52815 1,67 5,63E-07 

Fam78b family with sequence similarity 78, member B 226610 1,66 1,32E-03 

Casp4 caspase 4, apoptosis-related cysteine peptidase 12363 1,64 1,12E-03 

Psg16 pregnancy specific glycoprotein 16 26436 1,64 3,14E-07 

Fos FBJ osteosarcoma oncogene 14281 1,64 1,00E-03 

Cntfr ciliary neurotrophic factor receptor 12804 -1,62 5,53E-04 

Tnni1 troponin I, skeletal, slow 1 21952 1,58 5,23E-05 

Eomes eomesodermin homolog (Xenopus laevis) 13813 -1,58 8,98E-05 

Sykb spleen tyrosine kinase 20963 1,57 1,69E-05 

Aplp1 amyloid beta (A4) precursor-like protein 1 11803 1,55 3,51E-05 

Plekhh3 pleckstrin homology domain containing, family H 3 217198 1,54 1,08E-05 

Fam155a family with sequence similarity 155, member A 270028 1,51 3,26E-06 

Krtap11-1 keratin associated protein 11-1 16693 1,51 2,44E-05 

Egr2 early growth response 2 13654 1,51 7,61E-04 

5430435G22Rik RIKEN cDNA 5430435G22 gene 226421 1,48 3,56E-06 

Padi2 peptidyl arginine deiminase, type II 18600 1,48 6,56E-05 

Rasl11a RAS-like, family 11, member A 68895 1,48 2,00E-04 

Lrrc2 leucine rich repeat containing 2 74249 1,47 1,92E-06 

Chst8 carbohydrate (N-acetylgalactosamine 4-0) sulfotransferase 8 68947 1,47 4,70E-04 

Padi2 peptidyl arginine deiminase, type II 18600 1,47 1,18E-04 

C3 complement component 3 12266 1,46 4,43E-06 

Gm1078 predicted gene 1078 381835 1,46 1,83E-05 

Itih3 inter-alpha trypsin inhibitor, heavy chain 3 16426 1,46 8,60E-06 

Serpinb6b serine (or cysteine) peptidase inhibitor, clade B, member 6b 20708 1,45 1,40E-04 

Ephb1 Eph receptor B1 270190 1,44 1,15E-05 

Ddr1 discoidin domain receptor family, member 1 12305 1,41 6,00E-06 

A_55_P2082854 probe 
 

1,41 2,31E-05 

Clec7a C-type lectin domain family 7, member a 56644 1,41 8,71E-06 

Gm1631 predicted gene 1631 381371 1,40 2,34E-04 

S100z S100 calcium binding protein, zeta 268686 1,40 1,47E-04 

P2ry2 purinergic receptor P2Y, G-protein coupled 2 18442 1,39 6,73E-06 

Gabrb3 gamma-aminobutyric acid (GABA) A receptor, subunit beta 3 14402 -1,39 6,55E-04 

S100a4 S100 calcium binding protein A4 20198 1,37 2,75E-04 

Fas Fas (TNF receptor superfamily member 6) 14102 1,35 6,80E-05 

Mpeg1 macrophage expressed gene 1 17476 1,35 8,61E-05 

Tspan4 tetraspanin 4 64540 1,33 7,37E-06 

Lcp1 lymphocyte cytosolic protein 1 18826 1,33 9,72E-06 

Gad1 glutamic acid decarboxylase 1 14415 1,31 2,24E-04 

Scin scinderin 20259 1,31 2,28E-05 

Vsig4 V-set and immunoglobulin domain containing 4 278180 1,31 6,01E-04 

Plxnb3 plexin B3 140571 1,30 4,29E-04 

Lcp1 lymphocyte cytosolic protein 1 18826 1,29 7,09E-06 
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Slc6a8 solute carrier family 6 (neurotransmitter transporter, creatine), 8 102857 1,29 2,11E-04 

Srrm4 serine/arginine repetitive matrix 4 68955 1,26 4,04E-05 

Il13ra1 interleukin 13 receptor, alpha 1 16164 1,26 1,72E-03 

Phlda3 pleckstrin homology-like domain, family A, member 3 27280 1,26 6,01E-05 

Serping1 serine (or cysteine) peptidase inhibitor, clade G, member 1 12258 1,25 5,80E-06 

A_51_P462428 probe 
 

1,25 9,16E-05 

Zfp704 zinc finger protein 704 170753 1,24 1,61E-04 

Adam23 a disintegrin and metallopeptidase domain 23 23792 1,24 1,89E-06 

Nbl1 neuroblastoma, suppression of tumorigenicity 1 17965 1,23 3,56E-06 

Gm3502 predicted gene 3502 100041765 1,23 1,57E-04 

Ccr5 chemokine (C-C motif) receptor 5 12774 1,23 2,34E-05 

Rab3b RAB3B, member RAS oncogene family 69908 1,23 2,47E-05 

Itga5 integrin alpha 5 (fibronectin receptor alpha) 16402 1,23 5,32E-06 

Whrn whirlin 73750 -1,22 1,44E-03 

Cnn3 calponin 3, acidic 71994 1,22 6,86E-06 

Slc6a4 solute carrier family 6 (neurotransmitter transporter, serotonin), 4 15567 1,22 4,36E-06 

Ltbp1 latent transforming growth factor beta binding protein 1 268977 1,22 3,26E-04 

Stk32a serine/threonine kinase 32A 269019 1,21 4,61E-05 

Myb myeloblastosis oncogene 17863 -1,21 2,59E-04 

Trim2 tripartite motif-containing 2 80890 1,20 4,11E-05 

Stk32a serine/threonine kinase 32A 269019 1,20 1,02E-04 

Tspan8 tetraspanin 8 216350 1,20 8,30E-05 

Serping1 serine (or cysteine) peptidase inhibitor, clade G, member 1 12258 1,19 3,31E-06 

Ttc34 tetratricopeptide repeat domain 34 242800 -1,19 9,72E-06 

Lilrb3 leukocyte immunoglobulin-like receptor, subfamily B  18733 1,18 5,99E-06 

Cadps Ca2+-dependent secretion activator 27062 1,18 2,90E-06 

Tnfrsf1b tumor necrosis factor receptor superfamily, member 1b 21938 1,18 2,48E-04 

Tlr12 toll-like receptor 12 384059 1,16 6,24E-04 

2610002J02Rik RIKEN cDNA 2610002J02 gene 67513 -1,16 7,26E-06 

Gm2737 predicted gene 2737 100040368 1,15 3,03E-05 

Klrb1a killer cell lectin-like receptor subfamily B member 1A 17057 1,14 2,88E-06 

Ermap erythroblast membrane-associated protein 27028 1,14 6,38E-04 

4931406P16Rik RIKEN cDNA 4931406P16 gene 233103 1,13 1,24E-05 

Dpt dermatopontin 56429 1,13 1,64E-03 

Emp1 epithelial membrane protein 1 13730 1,13 3,10E-04 

Cpe carboxypeptidase E 12876 1,13 1,95E-06 

Defa1 defensin, alpha 1 13216 1,13 3,21E-04 

Spnb1 spectrin beta 1 20741 1,12 6,87E-05 

Wnt10a wingless related MMTV integration site 10a 22409 1,12 2,50E-04 

2610002J02Rik RIKEN cDNA 2610002J02 gene 67513 -1,12 1,36E-05 

Slc4a3 solute carrier family 4 (anion exchanger), member 3 20536 1,12 4,08E-06 

Rbp1 retinol binding protein 1, cellular 19659 1,12 2,69E-04 

Mpeg1 macrophage expressed gene 1 17476 1,12 2,27E-05 

Accn1 amiloride-sensitive cation channel 1, neuronal (degenerin) 11418 1,12 1,96E-04 

Cldn10 claudin 10 58187 -1,11 1,19E-03 

Il1rl1 interleukin 1 receptor-like 1 17082 1,11 8,97E-04 

Cd74 CD74 antigen, invariant polypeptide of MHC 16149 1,11 9,86E-05 

Il1r1 interleukin 1 receptor, type I 16177 1,10 6,75E-05 

Evi2a ecotropic viral integration site 2a 14017 1,10 1,24E-04 

Nfkb2 nuclear factor of kappa light polypeptide gene enhancer in B-cells 18034 1,09 1,13E-05 
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Psen2 presenilin 2 19165 1,09 3,74E-05 

Inf2 inverted formin, FH2 and WH2 domain containing 70435 1,08 1,03E-04 

Cmtm3 CKLF-like MARVEL transmembrane domain containing 3 68119 1,08 4,48E-06 

Il17ra interleukin 17 receptor A 16172 1,08 6,56E-05 

Apoc1 apolipoprotein C-I 11812 1,07 9,27E-05 

Eda ectodysplasin-A 13607 1,07 3,92E-05 

A630023P12Rik RIKEN cDNA A630023P12 gene 231603 1,06 3,44E-04 

Spink8 serine peptidase inhibitor, Kazal type 8 78709 1,05 3,00E-04 

Lilrb4 leukocyte immunoglobulin-like receptor, subfamily B, member 4 14728 1,05 5,93E-04 

Cpe carboxypeptidase E 12876 1,05 3,14E-06 

Slc4a3 solute carrier family 4 (anion exchanger), member 3 20536 1,05 5,16E-06 

Pdpn podoplanin 14726 1,05 1,19E-04 

Mmp23 matrix metallopeptidase 23 26561 1,04 9,40E-04 

Lipa lysosomal acid lipase A 16889 1,04 3,95E-05 

Mgp matrix Gla protein 17313 1,03 3,34E-06 

Cnn3 calponin 3, acidic 71994 1,03 7,36E-06 

Aqp8 aquaporin 8 11833 1,03 1,25E-04 

Cfi complement component factor i 12630 1,03 2,12E-05 

Gpr137b G protein-coupled receptor 137B 83924 1,02 1,56E-05 

Gbx1 gastrulation brain homeobox 1 231044 1,01 2,18E-04 

Clec4a3 C-type lectin domain family 4, member a3 73149 1,01 4,49E-05 

Fosl2 fos-like antigen 2 14284 1,01 1,07E-03 

Osmr oncostatin M receptor 18414 1,01 3,19E-04 

Car11 carbonic anhydrase 11 12348 1,00 1,59E-04 
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